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Abstract: During process development, bioprocess data need to be converted into applicable knowl-
edge. Therefore, it is crucial to evaluate the obtained data under the usage of transparent and reliable
data reduction and correlation techniques. Within this contribution, we show a generic Monte Carlo
error propagation and regression approach applied to two different, industrially relevant cultiva-
tion processes. Based on measurement uncertainties, errors for cell-specific growth, uptake, and
production rates were determined across an evaluation chain, with interlinked inputs and outputs.
These uncertainties were subsequently included in regression analysis to derive the covariance of the
regression coefficients and the confidence bounds for prediction. The usefulness of the approach is
shown within two case studies, based on the relations across biomass-specific rate control limits to
guarantee high productivities in E. coli, and low lactate formation in a CHO cell fed-batch could be
established. Besides the possibility to determine realistic errors on the evaluated process data, the
presented approach helps to differentiate between reliable and unreliable correlations and prevents
the wrong interpretations of relations based on uncertain data.

Keywords: generic error propagation; Monte Carlo; rate calculation; regression analysis; bioprocess
evaluation; interlinking of multiple methods

1. Introduction

Verified relations between process parameters and cell-specific characteristics is the
key knowledge to develop robust and scalable bioprocesses [1]. This knowledge is often
based on regression analysis of historical data, where all possible relations are inspected [2].
Besides classical process parameters such as pH, temperature, and dissolved oxygen,
scalable biomass-specific reaction rates are included in this analysis both as independent
(such as product formation qp) and regressor variables (such as growth µ or substrate
uptake rates qs) [3–6]. The knowledge of the interdependencies among these reaction rates
ease the scale-up, process design, and control.

The calculation of biomass-specific rates is based on different data sources, including
online signals and offline measurements and their timely changes [7]. Different approaches
can be followed to obtain the targeted rates, which all include a series of evaluation
procedures to maintain the information contained in the signals. The use of smoothing and
spline fits might be a good way to obtain smooth time derivatives of noisy measurements [8],
but their usage is critical with a low number of measurements with the risk of smoothing
out important biological events. Due to the low number of measured samples, the finite
differences of two subsequent measurements are most commonly used in biotechnology.
As displayed by [7,9], the calculation accuracy of the rates is highly dependent on the
measurement frequency and the underlying signal-to-noise ratio of the used measurement
methodology. This results in a trade-off between laborious high-frequency sampling
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including smoothing and spline fits or low-frequency sampling and finite differences
among the few measurement points.

To circumvent this trade-off, kinetic models can be used [10]. The underlying reaction
kinetics are hereby described by a mass balance model with different reaction kinetics, e.g.,
first-order or Monod terms [11]. By fitting the model to the data, realistic rate trajectories
can be deduced by the model dynamics [12] or by employing model-based state estimation
techniques [13,14]. Although the approximation of reaction rates based on an underlying
model combined with offline and online measurements leads to good results, an appropri-
ate model and knowledge of the internal reaction dynamics are needed, which is often not
the case in biotechnological processes.

If no exact reaction kinetics are known, a constant first-order rate between two mea-
surements can be assumed. In this case, the reaction rates can be determined by solving the
mass balance, where the state change is described by a general material balance including
inputs, conversion, and output terms. By minimizing the error between the balance equa-
tion and the included measurement points, the optimal constant rate can be determined for
the analyzed time interval, which can include at least two or more measurement points [15].

No matter what calculation approach is followed, the underlying measurements are
prone to errors, which propagates throughout all rate evaluation and regression proce-
dures [16]. To propagate these uncertainties through mathematical functions, a calculus-
based approximation or a functional approach can be followed [17,18]. The calculus-
based approximation propagates the uncertainty by mathematical error propagation laws,
whereas the functional approach re-evaluates the function by including the expected or
observed ranges of the measurements. Although computationally efficient, the propagation
rules for the calculus approach need to be derived specifically for every evaluation proce-
dure, which is not straightforward for more sophisticated functions such as least squares
regressions or differential equation solvers [17]. Due to its easier implementation and
generic applicability, especially in numerical- and spreadsheet-based evaluation software,
the functional approach is often preferred [18]. By re-evaluating the function with the
highest measurement deviations, upper and lower confidence bounds on the results can be
determined. As in practice, measurement errors occur randomly, the mentioned procedure
potentially overestimates the propagated errors and gives rather a realistic error estimate, a
worst-case scenario that hinders the interpretability of the calculated outputs, as discussed
by [9] for biotechnological processes.

With today’s computational power, Monte Carlo sampling approaches are gaining
more and more attention [19]. This consists of repeating the calculations by varying
the input randomly within the stated limits of precision [20]. According to [21], error
propagation based on Monte Carlo sampling is the most reliable approach to assign
realistic errors to calculated results. For biotechnological processes, Monte Carlo methods
have already been successfully used to determine rate calculation errors [13], confidence
bounds of model parameters [22], and simulations outputs [23]. The determination of the
realistic uncertainties of the target variable is of central relevance for further correlation and
regression analysis, where visual inspection model identification and process design can be
significantly facilitated by the inclusion of measurement and calculation uncertainties. For
specific reaction rates, uncertainties in the range of 20% have been reported to be suitable
for conclusive interpretation [13] and process control [24].

Bivariate and multivariate regression are hereby a standard analysis to identify and
describe input and output dependencies. Although weighted least squares regression is
able to include errors on the predictor variables, possible errors on the regressor variables
are often not considered [25]. York (1966) [26] introduced an algorithm that enabled linear
regression for data with errors in both the regressor and predictor variables. In addition
to finding the best fitting parameters in the case of imperfect measurements, some other
important outputs of regression analysis are the parameter and prediction confidence
intervals, giving information on the reliability of the found relations. According to [27],
Monte Carlo sampling is also well suited to evaluate, uncertainty in regression analysis,
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which was shown by [21] for geochronology and by [22] to determine the parameter
confidence intervals of a nonlinear biotechnological model.

For targeted process development, efficient process transfer, and the definition of
operational spaces, it is important to deduce reliable and transferable information. Within
this contribution, we show therefore a generic Monte Carlo error propagation approach
to obtain a realistic error estimate on both the regressor and predictor variables based on
real measurement errors and how to use them, to determine uncertainty in subsequent
regression analysis. Based on the known uncertainty of the target variables, the most
suitable one can be selected for subsequent regression, and expected impacts can be
determined. This greatly facilitates the right conclusions and expectations, leading to a
quicker process development and time to market.

The paper is organized as follows: The determination of the scalable reaction and
their errors determined by Monte Carlo sampling are described in Section 2. In the subse-
quent Section 3, the propagated errors are included in the regression analysis, resulting in
trustable confidence bounds for the parameters and predictions. Based on these regression
models, effective control limits for an E. coli and a CHO fed-batch process were established.
After discussing the relevance of the obtained results (Section 4), the contribution concludes
with a strong suggestion to include measurement errors wherever possible (Section 5),
which is strongly facilitated by Monte Carlo sampling procedures.

2. Materials and Methods
2.1. Experimental Data and Measurements

Data from Escherichia coli were obtained from 4 fed-batch cultivations executed in a
parallel reactor system (DasGip Force, Eppendorf GmbH). The Fab-fragment-producing
E. coli strain was cultivated on defined media given in [28], and different exponential
glycerol feed profiles were applied during growth, whereas the inducing lactose feed was
kept the same for all experiments. Temperature was kept at 37 °C and pH 6.8 by the
addition of 12.5% NH3, which was consumed as the main nitrogen source. Dissolved
oxygen was kept over 30% by the addition of pure oxygen to the air inflow. Total flow
was kept at 2 vvm and the stirrer speed at 1200 rpm. Samples were taken after the batch
end, right before induction, and every 2 h during induction. Cells were separated from
the liquid (4500 rpm at 4 °C), and after washing the cell pellet with RO water, the pellet
was dried at 100 °C to determine the cell dry mass after reaching a constant weight. An
adequate dilution of the supernatant was analyzed by HPLC (refractive index), and from
a filtrate of homogenized (high-pressure homogenizer) cells, the product amount was
quantified by HPLC (UV); more details can be found in [29].

An industrial CHO cell line was cultivated in a chemically defined medium; see [30].
The fed-batch process was carried out in a 3.6 L bioreactor system (Labfors 5, Infors,
Switzerland) with an initial working volume of 2 L. The closed-loop controlled process
parameters were the temperature (37 °C), the pH value (6.8), the dissolved oxygen ten-
sion (40%), and the partial pressure of carbon dioxide (125 mbar). The experiment was
performed using three different feeds, namely a glucose feed, a glutamine feed, and a feed
with other potentially limiting components. Samples were taken once a day. Total and
dead cell counts were determined by an automatic cell counter (Cedex Hi res, Roche). The
concentrations of media components were analyzed by an enzymatic analyzer (Cedex Bio
HT, Roche).

2.2. Measurement Errors

An overview of the measurement errors and their origins is given in Table 1. If
available, the measurement accuracies of the analytical devices were taken from the device
specification (manufacturer). To determine the individual measurement uncertainties,
triplicates were measured for dry cell weights and HPLC measurements and duplicates for
cell counts. To evaluate the accuracy of the product analysis of the used E. coli strain, the
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measurements were repeated four times for one specific sample, including homogenization,
inclusion body solubilization, and rebuffering, as described in [29].

Table 1. Uncertainties of the measurements.

Raw Signal Unit Analytical Device Error σ Error Source

Weight substrate feed g Balance ±0.1 g manufacturer
Weight acid/feed feed g Balance ±0.1 g manufacturer
Sampling mL Graduated syringe ±3 mL manufacturer
Cell dry mass g/L Drying oven + balance individual triplicates
Total cell count cells/mL Cedex hi res individual duplicates
Viable cell count cells/mL Cedex hi res individual duplicates
Glycerol g/L HPLC (RI) ±3% triplicates
Glutamine g/L Cedex BioHT ±3% manufacturer
Lactate g/L Cedex BioHT ±3% manufacturer
Product E. coli g/L HPLC (UV) ±2.5% repeated measurements

2.3. Rate Calculation

The biomass specific rates were calculated under the usage of a simple material balance
equation for the corresponding component, as suggested by [15]. Hereby, biomass-cX-
specific growth µ and production qp rates can be described by considering dilution D = Fin

V
and the timely change in concentration dci

dt according to Equation (1).

dcX
dt

= µ cX − D cX

dcP
dt

= qP cX − D cX

(1)

For substrate uptake rates, an additional substrate feed (FS) with the concentration
(cS, f eed) was considered in the mass balance, given in Equation (2).

dcS
dt

= qS cX +
cS, f eed FS

V
− D cX (2)

Biomass-specific rates (e.g., qS) were determined using Nelder–Mead optimization
(MATLAB 2020a:fmin), where the ordinary differential equation (MATLAB 2020a: ode23)
was iteratively solved between each measurement interval (t ∈ [tk−1, tk]). The optimal rate
was identified at the minimum distance between the mass balance equation result (e.g.,
cS,t) and included measurements (e.g., cS,t,meas). In comparison to the calculations using
the finite differences [7], this calculation allows including the feed and dilution dynamics
between the evaluated measurement points and ensures closing overall mass balances.

min
qS

(cS,t − cS,t,meas)
2

subject to

dcS
dt

= qS cX +
cS, f eed FS

V
− D cX

t ∈ [tk−1, tk]

(3)

2.4. Linear Least Squares with Errors in Both Variables

The least squares approach is a widely used method to fit an equation to the data. This
is performed by minimizing min(S) the sum of squares of the residuals (Ȳ− ȳ)2, where
ȳ is the measured and Ȳ the predicted output. Weighted least squares can be used for
problems that are subject to uncertainties in the predictor variables by adding a weighting
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Wy, as shown in Equation (4). The second term of the displayed objective includes also the
residuals of the independent variables (x̄− X̄)2 weighted by Wx.

S =
n

∑
i=1

[Wy,i (ȳi − Ȳi)
2 + Wx,i (x̄i − X̄i)

2] (4)

York (1966) [26] developed a widely used procedure to efficiently solve the displayed
objective including error weighting for the predictor and independent variables for a
straight line fit. The weights Wy,i and Wx,i are defined as the reciprocal of the variance
of the measurement, Wii =

1
σ2

i
. A detailed description and comparison to other available

algorithms can be found in [25].

2.5. Monte Carlo Sampling for Error Propagation and Regression Analysis

For error propagation, rate calculations were repeated 500 times by a Gaussian sam-
pling procedure from the input uncertainty, described in Algorithm 1. From the obtained
results, the time-dependent standard error (σ̄) was calculated. The represented relative
error (Figure 2) is the average standard deviation, normalized by the correspondent value
of the variable. To propagate the error through multiple calculation steps (indicated as
function f ), the 500 results ȳi−1 from the previous steps were used as the inputs for the
subsequent calculation steps i and iterated N times (N = 500) with Gaussian distribution
(R ∼ N (0, 1) and with the standard deviation σ̄i−1 of the function inputs ȳi−1), resulting in
the final output uncertainty σ̄i.

Algorithm 1 Monte Carlo sampling for error propagation chain.

Calculation Step 1

for k = 1 : N do
x̄sampled = x̄ + σ̄ ; R ∼ N (0, 1)
ȳk = f (x̄sampled, t, θ)

end for

ȳ1 = ∑N
k=1 ȳk

N

σ̄1 =

√
∑N

k=1(ȳk−ȳ)2

N−1

Calculation step i

for k = 1 : N do
ȳi,sampled = ȳi−1 + σ̄i−1 ; R ∼ N (0, 1)
ȳk = f (ȳi,sampled, t, θ)

end for

ȳi =
∑N

k=1 ȳk
N

σ̄i =

√
∑N

k=1(ȳk−ȳ)2

N−1

Similar to the error propagation, a Monte Carlo sampling procedure was used for
the regression analysis. As described in Algorithm 2, the regression was calculated N
times (N = 500) under the consideration of the Gaussian distribution (σ̄ R ∼ N (0, 1)), the
deflection of independent x̄sampled, and predictor ȳsampled variables. From the N obtained
parameter sets Pk(1:N), the parameter covariance covP, parameter uncertainty (σ̄P), and
prediction uncertainty σ̄ŷ can be calculated according to the equations given in Algorithm 2.
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Algorithm 2 Monte Carlo sampling for regression analysis.

for k = 1 : N do
x̄sampled = x̄ + σ̄x ; R ∼ N (0, 1)
ȳsampled = ȳ + σ̄y ; R ∼ N (0, 1)
P̂k = arg min

Pk

S(Pk),

ŷk = f (x̄sampled, P̂k)
end for

covP = cov(Pk(1:N))

σ̄P =
√

diag(covP)

σ̄ŷ = ∑N
k=1(ŷk−ȳ)2

N−1

Assuming a Gaussian distribution, the obtained standard deviations of the rate evalu-
ation (σ̄), as well as standard deviations from regression analysis including the parameter
deviation (σ̄P) and the standard deviation of the prediction (σ̄ŷ) covered 68.3% of the pop-
ulation. For the confidence bounds, 1σ was used, whereas for the control limit, 3σ (99%)
was used.

3. Results
3.1. Propagation of the Analytical Uncertainties in the Data Evaluation Procedures

Two cultivation datasets were analyzed according to the described procedure. The
dependency matrix (Figure 2) visualizes the overall rate calculation procedures indicating
the inputs and outputs of the single evaluation steps in a hierarchical order. According
to the procedure in Algorithm 1, the output uncertainty (out) was used as the input
uncertainty (in) for the next calculation step. Monte Carlo sampling occurred under the
consideration of the measurement errors, which are summarized in Table 1. Within Figure 1,
the time-resolved measurement inputs and the correspondent output uncertainties are
displayed for an analyzed process.
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Figure 1. Time-resolved input and rate calculation output data for an exemplary cultivation (E. coli). The rate calculation
results are displayed as the black line, and the associated uncertainty, obtained by Monte Carlo resampling, is displayed as
grey shading.

Feed rates were calculated via Savitzky–Golay differentiation (2nd-order polynomial,
50 data points as the window), including balances with an accuracy of ±0.1 g. Error
propagation revealed a precision of 2% for substrate feed and only 16% for the high
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dynamic acid and base feeds. The highest uncertainties can be observed for the calculation
of the specific growth rate (µ), which is based on Equation (1) and always solved between
two measurement points. Due to the usage of more accurate cell count measurements
instead of dry cell weights, the growth rate determined for the CHO cell cultivation was
more precise (14.4% uncertainty) compared to the average error for the E. coli. Unlike the
growth rate, the biomass specific substrate uptake and production rates can be determined
with uncertainties below 10%. This can be explained by error propagation laws as the error
of biomass is not multiplied as for the calculation of the growth rate.

Within Figures 1 and 2, time-resolved calculation inputs, as well as rate calculation
results are displayed for one of the four analyzed E. coli processes. As discussed above, a
high uncertainty in the growth rate can be seen, although the input measurements showed
reasonable low errors. The growth rate is very imprecise, and therefore, it is hard to observe
significant changes over time, which can hinder subsequent correlation and regression
analysis. Overall, the uncertainty lies within the reported uncertainties of 20% [13,24] and
can therefore be regarded as reliable.
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Figure 2. Rate calculation procedure for E. coli and CHO cell cultivation datasets, presenting the inputs (in) and outputs (out)
of the single calculation steps and the relative average error for the outputs obtained by a Monte Carlo error propagation.
The target variables for the subsequent analysis were the specific growth rate (µ), the cell-specific glycerol (qs) and glutamine
(qGln) uptake rates, the recombinant protein (qp) and lactate (q(Lac)) formation rates, and the cell viability. * The viable cell
count was used as an additional input for the CHO cell process.

3.2. Regression Analysis Based on Uncertain Data

Biomass-specific rates offer the possibility to determine scalable and transferable
relationships, as well as to discover product formation kinetics and metabolic behavior. In
the simplest case, these relations can be described by a straight line, which can be seen for
the maximal reached biomass-specific production rate qp and the specific substrate uptake
rate qs for the examined E. coli processes and for the cell-specific lactate production (qlac)
and glutamine uptake (qgln) for the CHO cell process.

3.2.1. E. coli

The linear relation between the maximal reached biomass-specific production rate qp
and the specific substrate uptake rate qs for the examined E. coli is displayed in Figure 3,
and the resulting parameters are summarized in Table 2.

In Figure 3a,b, standard linear regression is displayed as Ls. Under the usage of
York regression including error weighting based on qs and qp, different results for the
y-intercept and the slope were obtained, as displayed in Table 2 and summarized in Table 2.
As indicated by the error bars, high qs values are less precise. Whereas in a normal or
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weighted least squares approach, this high uncertainty is ignored, York regression includes
this point with a reduced weight on the overall fit.

Single regression results from the Monte Carlo sampling are displayed in Figure 3c,d
from which the 68.3% confidence bounds and the error ellipse were calculated, displayed
in Figure 3e,f. Besides showing narrower confidence bounds, the York regression indicated
an overall higher slope and a negative y-intercept. The error ellipse in (d) shows that
under the used data, the y-intercept and the slope were cross-correlated, whereas two local
clusters were formed based on the two used regression procedures (f).

Figure 3. Regression analysis between biomass-specific substrate uptake qs and specific production
rate qp in an E. coli fed-batch process. (a) Regression line and (b) regression parameters from normal
least squares (LS) and York regression (York). (c,d) One-thousand Monte Carlo regressions based on
the uncertainties of the specific rates. (e,f) The obtained 68.3% parameter confidence intervals and
resulting prediction confidence.

Although a positive correlation between qs and qp can be seen, the correct parametriza-
tion of a line is hampered by the cross-correlation of the y-intercept and the slope. By
integrating the propagated measurement uncertainty under the usage of York regression,
the 68.3% error ellipse (Figure 3f) can be significantly narrowed, whereas for the standard
least squares (Ls) regression, further data points close to the y-intercept would be necessary
to reduce cross-correlation. Within Table 2, the final regression parameters are summarized.
As already validated by the original paper [26], the York regression parameters and their



Bioengineering 2021, 8, 160 9 of 17

error estimate was not affected by the Monte Carlo resampling procedure. The Monte
Carlo resampling (Ls MC) revealed high scattering and large confidence bounds under
the usage of normal least squares regression. The intercept shows an error of over 400%
and the slope 8.9%, whereas the uncertainties from York regression are much smaller with
16.6% on the y-intercept and 2.3% on the slope.

Table 2. Summary of the resulting regression parameters of the analyzed E. coli fed-batch processes
with the standard parameter error for least squares (Ls) and York regression, with and without Monte
Carlo (MC) resampling.

Methodology y-Intercept (g/(gh)) Slope (-)

Ls 0.0003 0.1321
Ls MC 0.0005 ± 0.0021 0.1319 ± 0.0117
York −0.0038 ± 0.0006 0.1567 ± 0.0036
York MC −0.0038 ± 0.0006 0.1566 ± 0.0038

3.2.2. CHO Cells

For the CHO cell process, the relation between glutamine uptake qgln and lactate
production qlac was investigated. The respective linear regressions are shown in Figure 4,
and the resulting parameters are summarized in Table 3. In Figure 4a,b, the standard
linear regression is displayed as Ls. Under the usage of York regression, propagated errors
on qgln and qlac were included in regression analysis. Although the regression lines and
parameters in Figure 4a,b are well aligned, the subsequent Monte Carlo procedure revealed
the importance of York’s error weighting. Due to the high uncertainty in high glutamine
uptake calculations, the normal Ls procedure is strongly influenced by this high error,
leading to high scattering in the regression parameters (Figure 4d and Table 3 Ls MC). In
Figure 4e,f, the resulting 68.3% confidence bounds are shown for the examined CHO cell
process. Similar to the E. coli example, the confidence bounds especially of the regression
parameters significantly decreased under the usage of error weighting.

The Monte Carlo sampling revealed 57.1% error on the y-intercept and 24.5% on the
slope resulting from the LS regression procedure, whereas York regression yielded only
14% error on the slope and the y-intercept. Both methods resulted in a negative y-intercept,
which indicates potential lactose metabolization at low glutamine availability. A closer
view of Figure 4d reveals that due to the high uncertainty of the determined qgln, the
y-intercept of the normal least squares regression also reaches positive values. In this
regard, a conclusive statement is hindered.

Table 3. Summary of the resulting regression parameters of the analyzed CHO cell fed-batch process
with the standard parameter error for least squares (Ls) and York regression, with and without Monte
Carlo (MC) resampling.

Methodology y-Intercept (g/(108 Cells ∗ h)) Slope (-)

Ls −0.0046 1.9518
Ls MC −0.0028 ± 0.0016 1.6480 ± 0.4016
York −0.0040 ± 0.0005 1.8652 ± 0.2028
York MC −0.0043 ± 0.0006 1.8965 ± 0.2582
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Figure 4. Regression analysis between cell-specific glutamine uptake qgln and specific lactate forma-
tion rate qlac in a CHO cell fed-batch process. (a) Regression line and (b) regression parameters from
normal least squares (LS) and York regression. (c,d) One-thousand Monte Carlo regressions based on
the uncertainty of the specific rates. (e,f) The obtained 68.3% confidence intervals on the regression
line and the regression parameters.

3.3. Determination of Confidence Bounds for Control

For production processes, the extracted relations between manipulable process and bi-
ological parameters are of utmost importance to ensure optimal operation. The production
and consumption rates are hereby of central interest to guarantee efficient substrate-to-
product conversion. Besides having the possibility to identify relations even with uncertain
data sources, controllable limits have to be deduced, to ensure a consistent process outcome.
The definition of practicable control limits and the prediction of the expected results is a
challenging task and is highly dependent on the expected and present uncertainties. On
the one hand, if the control limits are too narrow, there is a high risk of discarding batches
based on random and unavoidable errors. On the other hand, generous control limits are
not effective to detect critical deviations. Based on the propagated and predicted uncer-
tainties, the best trade-off and reliable control limits, as well as expected output ranges
can be defined as displayed in Figure 5 for the E. coli and in Figure 6 for the CHO cell
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process. Hereby, the realistic uncertainties on the relations between the target variables are
considered and offer the determination of statistically sound and effective control limits.
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Figure 5. Control limits for high (−0.4 g/(g h)) and low (−0.1 g/(g h)) biomass-specific substrate
uptake (qs) during induction with the offline-determined uptake rates and their standard deviation
σoffline. Resulting and predicted productivities qp of the two processes with the 99% prediction
confidence and standard deviation for the measured productivities.
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Figure 6. Control limits for cell-specific glutamine uptake (qgln) to avoid lactate (qlac) production
with offline-determined specific rates with their standard deviation (σoffline) of the examined CHO
cell process. Deduction of control limits based on York and LS regression with their expected lactate
production with 99% confidence.

3.3.1. E. coli

For the investigated E. coli process, high production rates qp are desirable, which can
be reached with high glycerol supply qs. In Figure 5, the specific substrate uptake rates
during the induction for two processes are shown including the predicted and the obtained
productivities qp. Based on the propagated uncertainty on the determination of the biomass-
specific uptake rate qs, 3 σ (99%) control limits can be defined. A working controller is
able to keep the value within these limits, whereas fluctuations within these limits are
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mostly due to propagated measurement uncertainties. For the process with low specific
glucose uptake, the control was keeping the set-point within the reachable limits, whereas
the higher set-point (0.4 g/g/h) showed slight deviations. With respect to the predicted
process outcome, both processes yielded productivities within the predicted limits.

3.3.2. CHO Cells

Lactate can have inhibiting effects on CHO cells. Therefore, the lactate concentration
needs to be kept under control and as low as possible during cultivation processes. As
shown in Figure 4a–f, glutamine availability enhances lactate production. Since glutamine
is an essential component, it needs to be provided to the culture. Based on the retrieved
correlation, glutamine supply without a net production of lactate can be defined. As
already shown for the previous example, reliable control limits can be defined, which are
displayed in Figure 6. Based on the propagated error 3σ (99%), control limits to avoid
lactate formation can be defined. For the examined CHO cell process, it can be observed
that as long the glutamine uptake qgln is within the control limits, lactate formation qlac
remains negative, indicating slight lactate assimilation and effective prevention of lactate
accumulation. Within the bar chart in Figure 6, the deduction of the control limits is shown.
Based on the York regression, effective control limits (qgln,critical) to avoid lactate production
qlac,expected can be defined. As the normal least squares (Ls) yields highly biased regression
parameters, no feasible qgln,critical can be defined, so that the 99% confidence bounds would
also reach positive qlac,expected. Besides that, the expected lactate production is highly
uncertain with broad confidence bounds reaching from relatively high net production to
high assimilation rates.

3.4. Prediction of Harvest Time Point Probability

To deliver a consistent matrix structure of the cell broth for further purification and
polishing steps, the harvest time point is a critical process parameter, which can change
from batch to batch. For CHO cell processes, commonly, the overall viability is taken as an
indicator for the optimal time point of harvest. Although within Table 1, the displayed error
on the cell viability (1.4%) is very low, it can still have an impact on the determination of
the optimal harvest time point, as displayed in Figure 7 for the analyzed CHO cell process.
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Figure 7. Determined CHO cell viability throughout a fed-batch experiment with a harvest threshold
of 90% viability. Based on the propagated uncertainty, the probability of crossing the threshold can
be determined.

Hereby, an exemplary threshold of 90% was selected, and the probability of crossing
this threshold was calculated based on the measurement precision. Reaching 90% viability
after a few days of cultivation is a typical value for mammalian cultivations [31]. With an
exact measurement or by ignoring the measurement error, Day 10 would be the optimal
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harvest time point. By considering the uncertainty of the determination of the cell viability,
a harvest at Day 9 would ensure 90% certainty to be above the selected threshold.

4. Discussion
4.1. Realistic Quantification of Errors on Determined Specific Rates

As displayed in Figure 2 and within Figure 1, the proposed Monte Carlo procedure
offers the possibility to determine realistic uncertainties on evaluated data. This is especially
important for the determination of uncertainties on specific rates, as shown by [7]. Although
specific rates offer the possibility to deduce transferable and scalable knowledge from
experiments, they are subject to high errors, which is important to consider before drawing
any conclusion or using them for subsequent root cause analysis, as proposed by [32].

The specific growth rate is an important and widespread variable used as an input
for analysis [33] and as a control variable [24]. Since the error propagation revealed that
the growth rate is subject to high uncertainties of approximately 20%, further analysis and
control should possibly be based on alternative rates that can be determined more precisely,
as for example the specific substrate uptake rate qs, as shown in a previous work [34].

4.2. Error Weighting for a Better Identification of the Regression Parameters

Regression analysis is a central tool for simple and multivariate evaluation procedures
in biotechnology. Visual data inspection or correlation analysis are hereby used to discover
rough patterns and relations. Subsequent regression analysis aims to deduce a mathe-
matical relation for further usage in process design, monitoring, and control. Although
advanced multivariate regression techniques are in fashion [35–37], simple straight-line
fits and MLR procedures are still widespread and well suited for certain problems [38].
No matter what algorithms are used, all procedures rely on the calibration datasets with
underlying errors and uncertainties.

The here shown simple and transferable Monte-Carlo-based determination and inclu-
sion of these uncertainties does not need any additional experimental and analytical effort
and enables deriving the best-suited regression parameters and their distributions, no mat-
ter what regression or data evaluation procedure is used. Although Monte Carlo methods
come with extensive computational costs, they can be easily parallelized, making them
suitable for multicore computing, which is increasingly integrated in numerical software.

4.3. Achievable Control Limits

The accuracy of any controller is determined by its weakest point. In biotechnological
processes, the weakest points are often the measurements themselves, which determine
the deviation from the aimed set-points. Hereby, the controller can only act within the
precision and the accuracy of the underlying measurements [24,34]. This is important for
the definition of suitable control limits around the set-points [39]. Within this contribution,
it could be shown how achievable and effective the control limits can be for cell-specific
rates to obtain a certain productivity and to avoid overflow metabolism in an E. coli and
CHO cell process. Hereby, the control limits were based on the determined precision of the
calculated rates based on the reference measurements, which were propagated along the
regression procedure by the proposed Monte Carlo procedure.

4.4. Probabilistic Rather than Case-by-Case Decisions

Events and their timely detection during dynamic cultivation processes are important
to guarantee consistent product quality. Their definition and detection is widely discussed
within the scientific community [40]. One important event is the at-line monitoring of the
cell viability [31,41,42] and other components [43]. As these analytics are subject to errors,
a decision based on them can vary from batch to batch. Under the usage probabilistic
decisions, consistency can be ensured. Propagated errors are hereby the basis to evaluate
the probability to cross predefined thresholds, as exemplarily shown in Figure 7.
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5. Conclusions

Within this contribution, a ubiquitous applicable procedure was shown to propagate
measurement errors through bioprocess evaluation with the aim to achieve valid correla-
tions between target variables and reliable control limits for manipulable variables, as is
schematically displayed in Figure 8. The procedure consists of propagating the crude mea-
surement errors through a series of data evaluation methodologies before both determined
errors on regressor and predictor variables were included in a regression analysis. Based
on the determined regression uncertainty, expected results and effective control limits can
be predicted to meet the process needs.

Process
Needs

Measured Data

Data Evaluation

Target variables & 
their interrelation

Predictive Analysis

Error Propagation

Error Expectation

Uncertainty

Figure 8. Data evaluation and predictive analysis including uncertainty and propagating it along
these procedures.

Based on two industrially relevant organisms, E. coli and CHO cells, its applicability to
biotechnological cultivations was shown. For the calculation of the cell-specific uptake and
production rates, the propagation procedures revealed that with typical sampling frequen-
cies, the specific growth rate µ can be determined with the lowest precision (approximately
20%), whereas the determination of other specific rates showed higher precisions, below
10%. These precisions are important for further regression analysis or for monitoring and
control considerations.

Through simple linear regression analysis, correlations between the biomass-specific
substrate uptake rate qS and the production rate qP could be determined for E. coli, and
the relation between the cell-specific glutamine uptake rate qgln and lactate formation qlac
for the CHO cell process was determined. Under the usage of these errors, a realistic
distribution of the regression parameters, their covariance, and prediction confidence
intervals could be determined. Under the usage of error weighting in both the predictor
and regressor variables, confidence bounds could be significantly narrowed, without the
need for additional data points.

Within three use cases, the usefulness of the error propagation was assessed. For the
two examined organisms, control limits could be successfully established to guarantee
high production rates in a E. coli and to avoid excessive lactate formation in a CHO cell
fed-batch. In addition to that, probabilistic decisions were possible, as shown for the
harvest time point determination. Based on this, we avoided imperfect measurements
being wrongly interpreted, ensuring consistent decisions and the extraction of relevant
information, which are important to continuously improve and guarantee the quality of
biochemical processes. A sound inclusion of measurement uncertainty and its propagation
along process evaluation can additionally lead to a reduction of the needed experimental
iterations during process development and enable the assessment of needed measurement
accuracies, to obtain the aimed at regression and control accuracies.
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FA Functional Analysis
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qp biomass-specific product formation rate
qS biomass-specific substrate uptake rate
qi biomass-specific rate of component i
ci concentration of component i
X biomass
S substrate
P product
D dilution rate
cS, f eed substrate concentration in the feed
FS feed rate
tk t of sample k
cS,t,meas measured concentration at t
X̄ true input
x̄ reconstructed input by regression
Ȳ measured output
ȳ predicted regression output
Wy weighting matrix of predictions
Wx weighting matrix of input variables
S weighted sum of squared error
σ standard deviation of measured output or true input
N number of Monte Carlo iterations
f arbitrary function converting input x̄ to output ȳ
x̄sampled sampled input from Gaussian-distributed error
ȳk calculation result of sampled input
ȳi,sampled sampled input from output i
σ̄i standard deviation after calculation step i
Pk(1:N) regression parameter for N Monte Carlo evaluations
covP parameter covariance
σ̄P parameter standard deviation
σ̄ŷ standard deviation of regression output
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