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Abstract: In the present study, a novel approach for mid-infrared (IR)-based prediction of bovine 

milk fatty acid composition is introduced. A rapid, solvent-free, two-step centrifugation method 

was applied in order to obtain representative milk fat fractions. IR spectra of pure milk lipids were 

recorded with attenuated total reflection Fourier-transform infrared (ATR-FT-IR) spectroscopy. 

Comparison to the IR transmission spectra of whole milk revealed a higher amount of significant 

spectral information for fatty acid analysis. Partial least squares (PLS) regression models were 

calculated to relate the IR spectra to gas chromatography/mass spectrometry (GC/MS) reference 

values, providing particularly good predictions for fatty acid sum parameters as well as for the 

following individual fatty acids: C10:0 (R2P = 0.99), C12:0 (R2P = 0.97), C14:0 (R2P = 0.88), C16:0 (R2P = 

0.81), C18:0 (R2P = 0.93), and C18:1cis (R2P = 0.95). The IR wavenumber ranges for the individual 

regression models were optimized and validated by calculation of the PLS selectivity ratio. Based 

on a set of 45 milk samples, the obtained PLS figures of merit are significantly better than those 

reported in literature using whole milk transmission spectra and larger datasets. In this context, 

direct IR measurement of the milk fat fraction inherently eliminates covariation structures between 

fatty acids and total fat content, which poses a common problem in IR-based milk fat profiling. The 

combination of solvent-free lipid separation and ATR-FT-IR spectroscopy represents a novel 

approach for fast fatty acid prediction, with the potential for high-throughput application in routine 

lab operation. 

Keywords: mid-infrared spectroscopy; attenuated total reflection; bovine milk; fatty acids; partial 

least squares 

 

1. Introduction 

Milk is among the fastest growing agricultural commodities, with a worldwide 

production volume of more than 8.5 × 106 tons per annum, and an expected yearly growth 

rate of 1.6% until 2029 [1]. Bovine milk accounts for approximately 81% of total milk 

production, and is considered to be one of the most nutritionally complete foods, with a 

typical gross composition of 3.9% fat, 3.3% protein, and 4.6% lactose [2]. Milk fat 

predominantly consists of triglycerides, containing more than 400 different fatty acids, 
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but only 15 of them with relative shares of 1% or higher. The largest fraction are saturated 

fatty acids (SAT, approximately 70%), followed by monounsaturated fatty acids (MONO, 

approximately 25%), and polyunsaturated fatty acids (PUFA, approximately 5%) [3]. 

Individual fatty acid content in milk is influenced by different factors, such as animal 

genetics, stage of lactation, and feed intake [4]. Most controversies regarding the health 

effects of dairy products are associated with lipid composition [5]. SAT especially are often 

related with harmful effects such as coronary heart disease, while substitution with PUFA 

might reduce the risk of such disease [6].  

Gas chromatography (GC) is the gold standard for milk fatty acid profiling, offering 

high accuracy combined with maximum sensitivity [7]. Some of the major drawbacks are, 

however, the essential derivatization step prior to analysis, high costs, and significant time 

consumption, thus restricting its use for industrial purposes to a few samples from large 

batches. The demand for rapid, low-cost, high-throughput fatty acid profiling methods is 

consequently increasing with growing milk production. 

Mid-infrared (IR) spectroscopy is a powerful tool for bioanalytical applications [8], 

which has been demonstrated to present a rapid, label-free alternative to well-established 

chromatographic methods for the analysis of dairy products [9]. Specific absorption 

bands, arising from the rotational–vibrational transitions of molecules, allow for 

compound identification as well as quantification. Important nutritional parameters such 

as lactose, total fat, and total protein content are routinely detected using the commercially 

available MilkoScan (Foss, Hillerød, Denmark), a Fourier-transform infrared (FT-IR) 

spectrometer specifically developed for the analysis of dairy products [10]. Furthermore, 

novel laser-based mid-IR transmission spectroscopy shows high potential for the 

quantification of individual proteins in bovine milk [11–14]. 

Attenuated total reflection (ATR) is a prominent alternative probing technique to 

transmission mode. Here, the incoming IR light is totally reflected in an optically denser 

ATR element at the interface with a medium of lower optical density. This leads to an 

evanescent field that can interact with the sample at typical penetration depths of up to 2 

µm per reflection [15]. The sample is placed directly on top of the ATR element, allowing 

for quick and robust measurements of troublesome liquid matrices, such as oils [16,17]. 

Substantial effort has been put into investigating the potential of mid-IR transmission 

spectroscopy for milk fatty acid profiling [18–24]. Here, multivariate chemometric models 

based on partial least squares (PLS) were established in order to relate mid-IR absorbance 

spectra acquired from whole milk using the MilkoScan to GC reference data. These studies 

report good accuracy in predicting the absolute concentrations of certain fatty acids in 

milk, especially those available in high concentrations, such as C14:0, C16:0, and C18:1. It 

has been reported that these predictions, however, are most likely based on covariation 

structures between individual fatty acids and the total fat content, which may change with 

factors such as breed and feed [25]. When results are stated as relative fatty acid content 

in milk fat, they appear significantly poorer. 

As an alternative approach, dry film FT-IR spectroscopy was introduced [26]. Here, 

small milk samples were transferred into well plates, dried in a desiccator, and 

subsequently measured in transmission mode. Multivariate calibrations showed better 

results than those obtained from direct transmission measurements of whole milk. Here, 

the lipid preconcentration step was expected to contribute to a major part of the gained 

prediction improvements. Fine spectral differences associated with fatty acid composition 

might, however, still be hidden by overlapping absorption bands arising from other major 

milk components, such as proteins and carbohydrates. Hence, it is of major interest to 

investigate techniques for lipid separation prior to spectral acquisition, in order to enable 

improved prediction efficiency and avoid covariation structures with the total fat content. 

Classical solvent–solvent extraction methods [27,28] are considered to be reliable for 

the quantitative separation of lipids from food and animal tissues. Moreover, specific 

methods for milk fat extraction have been developed, standardized, and are today 

extensively used in routine lab operation [29,30]. These methods, however, require large 
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amounts of hazardous organic solvents, and are vastly time consuming. A novel, more 

rapid method using smaller amounts of organic solvents with shorter exposure times 

allows for the milk fat separation of approximately 20 samples in 30 min [31]. 

Alternatively, methods based on two centrifugation steps have been successfully applied 

to obtain pure milk fat without the use of organic solvents [32,33]. Thorough method 

validation using GC shows that there is no difference in relative fatty acid composition in 

the obtained lipid fraction compared to standard solvent–solvent extraction. These 

methods are consequently ideal for applications that require a representative part the of 

milk lipids instead of quantitative total fat extraction. 

The aim of this study is to show the potential of ATR-FT-IR spectroscopy combined 

with rapid, solvent-free lipid separation for milk fatty acid profiling. The information 

content of ATR-IR spectra recorded after lipid separation was compared with the IR 

transmission spectra of whole milk. By performing multivariate PLS analysis, good 

prediction accuracy could be obtained for individual fatty acids and relevant sum 

parameters. PLS calibration equations were optimized based on evaluation of the 

importance of individual wavenumbers to the multivariate models. Cross-correlations 

between individual fatty acids and total fat content were inherently avoided by the 

employed approach. The obtained results indicate several clear advantages over 

conventional FT-IR transmission spectroscopy of whole milk, revealing high potential for 

future high-throughput applications. 

2. Materials and Methods 

2.1. Milk Samples 

Forty-five milk samples were collected from the same number of cows in Austria 

(AREC Raumberg-Gumpenstein, in mid-September 2020), containing two different cattle 

breeds (¾ Holstein Friesian and ¼ Simmental) and three feeding groups. At the time of 

sample collection, the averages (±standard deviation) of the milk yield, days in milk, and 

lactation number were 20.7 ± 5.73 kg per day, 184 ± 5.73 kg days in milk, and 3.6 ± 2.15, 

respectively, ensuring a variety of milk fat composition. The diets of the three feeding 

groups were based upon ad libitum allowance of a forage mixture, which consisted of 

40% grass silage, 30% maize silage, and 30% hay on a dry matter basis. The pelleted 

concentrate mixture (0%, 20%, and 40% of total feed intake, respectively) consisted of 25% 

maize, 24% barley, 8% wheat, 8% molasses, 5% wheat bran, 15% soy meal, and 15% 

rapeseed meal. A pooled sample from morning and evening milk was collected from each 

cow. Unhomogenized raw milk samples were immediately stored at −80 °C without 

further conservation until 1 day before fat separation. A homogenized whole milk sample 

was purchased from an Austrian retailer and used to acquire a mid-IR transmission 

reference spectrum of whole milk. 

2.2. Fat Separation 

Milk fat separation was carried out according to the rapid two-step centrifugation 

method proposed by Feng et al. [32] and modified by Luna et al. [33]. Frozen milk samples 

were thawed overnight at 4 °C and subsequently tempered at room temperature for at 

least 20 min. Thirty milliliter aliquots were transferred into falcon tubes and centrifuged 

at 17,800× g for 30 min at 20 °C in a Sigma 3–18k centrifuge (Sigma Laborzentrifugen 

GmbH, Osterode am Harz, Germany). The fat-cake layer was transferred into microtubes 

and centrifuged at 19,300× g for 20 min at the same temperature, resulting in three separate 

layers. The upper lipid layer was removed and used for FT-IR and gas 

chromatography/mass spectrometry (GC/MS) measurements.  

2.3. GC/MS Analysis 

Standard solutions, containing 20 mg of milk fat per mL of dichloromethane, were 

prepared. For the derivatization of fatty acids, an aliquot of 50 µL of the standard solution 
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was transferred to a pre-cooled 1.5 mL GC vial with a 0.2 mL micro insert. Fifty microliters 

of internal standard (C17:0) and the same amount of trimethylsulfonium hydroxide 

(TMSH, 0.25 M in MeOH, Supelco, Vienna, Austria) solution were added, and the vial 

was capped immediately. Each vial was vortexed for 5 s, and then heated for 15 min at 70 

°C to complete derivatization. 

A GC instrument (Shimadzu GC-2010) equipped with a ZB-FAME column (30 m, 

0.25 mm I.D., 0.20 µm film thickness; Phenomenex, Aschaffenburg, Germany) coupled 

with a mass spectrometer (GCMS-QP2010 Plus, Shimadzu, Kyoto, Japan) was used to 

determine fatty acid content and profile. One microliter samples were injected in split 

mode (split 100:1) using a Shimadzu AOC-5000 Plus autosampler. The injector 

temperature was 250 °C. The purge flow was set to 3 mL/min and the column flow to 2.14 

mL/min. The oven program was 40 °C initially, held for 3 min, then increased by 10 °C/min 

to 100 °C, and further increased by 2 °C/min to 200 °C. The transfer line temperature of 

the mass spectrometer was kept at 200 °C, as was the ion source temperature. After a 

solvent vent of 2.7 min, the detector voltage was set to 1.05 kV, and the samples were 

measured in scan mode (35–500 m/z).  

For quantitative analysis, a method was developed and calibrated using a 37-

component FAME mix certified reference material (TraceCERT®, Supelco, Vienna, 

Austria). Calibration samples were prepared in the concentration range 20–600 mg/L. 

Quantitative analysis was based on the evaluation of the quantifier ion peak area for each 

FAME, provided that the ratio of quantifier and qualifier ions was within acceptable 

limits. Retention times and qualifier and quantifier ions for each analyte are reported in 

Table S1 of the Supplementary Materials. 

2.4. FT–IR Measurements 

ATR–FT–IR measurements were performed using a Bruker Tensor 37 FT-IR 

spectrometer (Ettlingen, Germany) equipped with a mercury cadmium telluride (MCT) 

detector (D* = 4 × 1010 cm Hz0.5 W−1 at 9.2 µm). The spectrometer was constantly flushed 

with dry air in order to reduce the influence of water vapor from the atmosphere. One 

drop of pure milk fat extract was manually placed onto a Platinum ATR single-bounce 

element (Bruker, Ettlingen, Germany). Measurements were performed with a spectral 

resolution of 2 cm−1, between 600 and 4000 cm−1 in double-sided, forward–backward 

acquisition mode. A Blackman–Harris 3-term apodization function and a zero-filling 

factor of 2 were used to calculate the final spectra. One hundred and twenty-eight scans 

were averaged per spectrum, leading to an acquisition time of fifty-two seconds. After 

each spectral acquisition, the ATR surface was cleaned with isopropanol and 

dichloromethane consecutively until recovery of the baseline signal. Transmission 

measurements were performed using the same instrument parameters, by injecting 

homogenized whole milk into a flow cell equipped with two CaF2 windows and a 37 µm-

thick spacer. The software package OPUS 7.2 (Bruker, Ettlingen, Germany) was used for 

evaluation of the spectral data. 

2.5. Data Analysis 

Multivariate data analysis was performed in MATLAB R2020a (Mathworks Inc., 

Nattick, MA, USA) using PLS Toolbox 8.9 from Eigenvector Research Inc. (Wenatchee, 

WA, USA). All ATR-IR absorbance spectra were identically preprocessed by calculation 

of 2nd derivative spectra, using a Savitzky–Golay filter (window = 15 points) and mean 

centering. The applied wavenumber range was individually selected for each parameter, 

based on the selectivity ratio (SR) [34]. Preprocessed FT-IR spectra and GC/MS reference 

values were used to develop partial least squares (PLS) regression models. Model 

performance was estimated by applying a contiguous blocks cross-validation with 10 data 

splits, using the full dataset. Furthermore, external validation was applied by randomly 

dividing the dataset into a calibration set of 30 samples, and an external validation set, 
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containing 15 samples. Characteristic statistical parameters were calculated to evaluate 

model performance. 

3. Results and Discussion 

3.1. Comparison of IR Spectra of Whole Milk and Separated Milk Fat Fraction 

Milk fat triglycerides show distinctive mid-IR absorption bands that are influenced 

by factors such as fatty acid chain length and degree of saturation [35]. Due to this high 

sensitivity, mid-IR spectroscopy-based prediction of milk fatty acid composition has been 

reported on multiple accounts and in different implementations. Particularly, the 

commercially available MilkoScan instrument is widely used for the direct spectral 

acquisition of whole milk [9]. With this device, FT-IR transmission spectra with a path 

length of 37 µm are recorded. A limitation of this approach, however, is the limited 

spectral information in certain wavenumber regions, which can be circumvented by 

separating the milk fat fraction from the complex milk matrix. 

In this work, milk fat was separated according to a rapid two-step centrifugation 

method [33]. It was shown that the hereby obtained lipid fraction possessed a 

representative fatty acid composition for the whole milk sample [32,33]. In addition to 

reduced workload and high throughput, the applied separation method excels in that it 

completely avoids the use of potentially hazardous or toxic solvents. This characteristic is 

particularly beneficial for subsequent mid-IR spectroscopy, as small residues of organic 

solvents can already lead to distinctive absorption bands that hide spectral details of the 

sample. This is specifically relevant in the present application, because the routinely 

employed solvents for milk fat extraction often exhibit the same functional groups (e.g., 

CH2, CH3) and, consequently, IR bands as lipids. Reproducible spectral acquisition after 

the immediate drying of solvent-based extracts on straight surfaces, such as the ATR 

crystal, is moreover restricted by the coffee-ring effect [36], which requires complex 

instrumentation to be avoided [37]. The combination of lipid separation and ATR-FT-IR 

spectroscopy provides the advantage that very small amounts of sample can be measured 

in a robust environment by placing them directly onto the active element. In the present 

study, one drop of the milk fat fraction was sufficient to cover the surface of the ATR 

crystal and to record representative absorbance spectra. Characteristic mid-IR bands of 

milk fat are listed in Table 1. Figure 1 displays the typical absorbance spectra of separated 

milk fat measured in ATR mode (blue) and whole milk recorded in transmission mode 

with a CaF2 cell and an optical path length of 37 µm (red). Here, the wavenumber range 

between 1850 and 2750 cm−1 was removed due to lack of information in this region. Visual 

inspection reveals that the information content of the two IR spectra is significantly 

different. The whole milk sample also contains vibrational bands from other major 

components of milk, such as lactose and other carbohydrates (approximately 1000–1480 

cm−1) and proteins (amide II band: 1500–1600 cm−1) [38]. 

Table 1. Characteristic mid-IR absorption bands of milk fat [39]. 

Wavenumber/cm−1 Detectable in Whole Milk * Group Mode of Vibration Functional Group 

3005 no C–H sym. stretch -C=CH- (cis) 

2953 yes C–H asym. stretch -CH3 (aliphatic) 

2922 yes C–H asym. stretch -CH2- (aliphatic) 

2853 yes C–H sym. stretch -CH2- (aliphatic) 

1743 yes C=O stretch C=O ester 

1655 no C=C stretch C=C (unsaturated) 

1462 overlapping C–H scissoring -CH2- (aliphatic) 

1377 overlapping C–H sym. deformation -CH3 (aliphatic) 

1238 overlapping C–H out-of-plane bend -CH2- (aliphatic) 

1162 overlapping C–O stretch C-O ester 

966 no C–H out-of-plane bend -C=CH- (trans) 

722 no C–H rocking -CH2- (aliphatic) 



Foods 2021, 10, 1054 6 of 14 
 

 

* Detection of the absorption band in a whole milk spectrum acquired in transmission mode, using CaF2 windows and an 

optical path length of 37 µm. Abbreviations: sym.: symmetric; asym.: asymmetric. 

 

Figure 1. Comparison between the ATR-IR absorbance spectrum of separated milk fat (blue) and 

whole milk recorded in transmission mode with a CaF2 cell with an optical path length of 37 µm 

(red). The spectral range between 1850 and 2750 cm−1 was removed due to lack of relevant 

information. 

The high absorbance of these components adversely affects the evaluation of the 

significantly lower absorbances originating from fatty acids in these spectral regions. In 

this context, the low wavenumber region overlapping with carbohydrate absorption 

bands in particular has proven to be important for the quantitative prediction of 

individual fatty acids (see Section 3.2.2). Furthermore, for transmission measurements 

with milk, large transmission paths (>30 µm) are required in order to prevent clogging of 

the cell because of the high viscosity and complex matrix of milk [40]. However, at these 

high optical paths, water (HOH bending band: 1643 cm−1) totally absorbs the irradiated IR 

light, and thus the spectral region between 1600 and 1700 cm−1 is not accessible. Moreover, 

CaF2, the typical window material used for transmission measurements of bovine milk, 

has its absorption edge at approximately 1000 cm−1 [41], meaning that IR bands at lower 

wavenumbers are not accessible using this approach. In this inaccessible spectral region 

for transmission measurements, there are located the C–H out-of-plane band at 966 cm−1 

and the C–H rocking band at 722 cm−1, which are well resolved in ATR-IR spectra of lipids. 

Due to these limitations, for the purpose of the determination of fatty acids, the related 

spectral features are better resolved in the ATR spectra, thus highlighting the advantage 

of the lipid separation step. 

3.2. Predicting Fatty Acid Content by Mid-IR Spectroscopy 

3.2.1. Partial Least Squares Analysis  

Individual PLS1 models were calculated to predict the most abundant fatty acids as 

well as the relevant sum parameters. PLS is a multivariate statistical approach, capable of 

calculating linear regression models from highly correlated variables, such as those 

usually found in spectroscopic data [42]. In the present study, the relationship between 

the recorded ATR absorbance spectra (x-matrix) and the GC/MS reference fatty acid 

concentration (y-matrix) was calculated. A preprocessing routine, combining second 
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derivative spectra with mean centering, was applied in order to achieve optimal results. 

Moreover, the included wavenumbers were individually selected for each model (see next 

chapter). Table 2 provides an overview of the obtained statistical parameters. The root 

mean square error of calibration (RMSEC) and the calibration coefficient of determination 

(R2) were calculated by using the full dataset of available milk samples (n = 45) in order to 

assess the quality of the calibration equations. For the visualization of the calibration 

equations, Figure 2 shows the relationship between the measured and predicted 

concentrations on the examples of unsaturated fatty acids (UNSAT, red) and long-chain 

fatty acids (LCFA, blue). In the optimal case, all points would lie on the regression line, 

while those above and below indicate over- and underestimation of ATR-based 

predictions compared to GC/MS reference values. The small deviation of individual data 

points from the regression line, as well as the obtained R2-values of 0.99, indicate highly 

linear relationships and very good description of the data by the model. Evaluation of 

prediction efficiency was performed using contiguous blocks cross-validation with 10 

data splits, revealing the root mean square error of cross-validation (RMSECV) and the 

cross-validation coefficient of determination (R2CV). Furthermore, external validation was 

applied by randomly dividing the dataset into a calibration set (n = 30) and an external 

validation set (n = 15). Table S2 shows the obtained statistical parameters for the reduced 

calibration set of 30 samples. The achieved root mean square error of prediction (RMSEP) 

and prediction coefficient of determination (R2p) from the external validation (Table 2) 

show similar results to the cross-validation, using the whole dataset, indicating high 

robustness of the calculated prediction models. The optimal number of latent variables 

(LVs), based on the lowest RMSECV, was between three and eight, which is reasonable 

for milk fat, which contains a high number of different fatty acids that can cause spectral 

variability in the system under study. Good prediction efficiencies were obtained for the 

important health related parameters SAT (R2CV = 0.94, R2P = 0.95) and UNSAT (R2CV = 0.96, 

R2P = 0.95). Further subclassification showed good prediction for MONO (R2CV = 0.95, R2P 

= 0.94), while the much lower concentrated PUFA were predicted with moderate accuracy 

(R2CV = 0.61, R2P = 0.27). Moreover, sum parameters regarding fatty acid chain length were 

calculated. Highly concentrated medium-chain fatty acids (MCFA, C12-C16) and LCFA 

(C17 and higher) were predicted with excellent accuracy (R2CV = 0.95/0.98, R2P = 0.97/0.99), 

whereas the lower concentrated group of short-chain fatty acids (SCFA, C4-C10) was 

predicted with moderate accuracy (R2CV = 0.64, R2P = 0.83). In the case of individual fatty 

acid content, excellent predictions (R2CV > 0.92, R2P > 0.93) were achieved for C10:0, C12:0, 

C18:0, and C18:1cis, while feasible predictions (R2CV > 0.84, R2P > 0.81) were obtained for 

C14:0 and C16:0. 

Table 2. Statistical parameters for each individual calibration equation estimating relative individual fatty acid 

concentration and relevant sum parameters in g/100 g of fat. 

  g/100 g Fat 
   Full Dataset (n = 45) Split Dataset (n= 30/15) 

Fatty Acid LVs Range RMSEC RMSECV R2 R2CV RMSEP R2P 

SAT 8 61.6–74.5 0.27 0.66 0.99 0.94 0.8 0.95 

MONO 8 19.8–30.3 0.28 0.57 0.99 0.95 0.74 0.94 

PUFA 3 2.2–4.2 0.20 0.24 0.73 0.61 0.28 0.27 

UNSAT 8 22.1–33.8 0.28 0.58 0.99 0.96 0.74 0.95 

SCFA 7 14.2–21.0 0.45 0.78 0.87 0.64 0.67 0.83 

MCFA 7 38.1–56.0 0.57 0.96 0.98 0.95 0.85 0.97 

LCFA 7 26.4–47.7 0.43 0.76 0.99 0.98 0.65 0.99 

C4:0 6 5.4–8.8 0.27 0.42 0.87 0.72 0.49 0.62 

C6:0 5 3.1–5.4 0.20 0.31 0.72 0.38 0.24 0.71 
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C8:0 5 1.5–3.2 0.12 0.16 0.81 0.64 0.11 0.88 

C10:0 7 2.1–4.9 0.05 0.11 0.99 0.97 0.10 0.99 

C12:0 5 2.0–5.6 0.09 0.16 0.99 0.96 0.19 0.97 

C14:0 7 7.4–13.3 0.20 0.49 0.97 0.85 0.48 0.88 

C16:0 8 21.1–35.1 0.40 1.05 0.98 0.85 1.4 0.81 

C16:1cis 4 1.2–3.9 0.28 0.41 0.73 0.44 0.44 0.39 

C18:0 5 5.6–14.6 0.38 0.57 0.97 0.93 0.63 0.93 

C18:1cis 8 14.9–27.2 0.22 0.74 0.99 0.92 0.77 0.95 

Abbreviations: LVs: latent variables; RMSEC: root mean square error of calibration; RMSECV: root mean square error of 

cross-validation; RMSEP: root mean square error of prediction; R2: calibration coefficient of determination; R2CV: cross-

validation coefficient of determination; R2P: prediction coefficient of determination; SAT: saturated fatty acids; MONO: 

monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; UNSAT: unsaturated fatty acids; SCFA: short-chain fatty 

acids (C4–C10); MCFA: medium-chain fatty acids (C12–C16); LCFA: long-chain fatty acids (C17 and higher). 

 

Figure 2. Relationship between measured (GC/MS) and predicted (cross-validation, FT–IR) fatty 

acid content in g/100 g fat for unsaturated fatty acids (UNSAT, left) and long-chain fatty acids 

(LCFA, right). 

An important parameter that can influence the quality of calibration equations is the 

number of applied samples. Previously, it has been shown that that use of many different 

samples can increase the predictability of milk fat composition [20]. For the present study, 

only a limited set of 45 samples was available. Nevertheless, the achieved results are 

clearly better than those reported for MilkoScan measurements [18,20] and ATR-FT-IR 

measurements of whole milk without fat separation [43], when final concentrations are 

stated in g/100 g fat. Moreover, the presented results are comparable to those obtained 

from the dry film approach, where a much higher number of samples (n = 219) was used 

[26]. Supposedly, an explanation for the more robust fatty acid prediction enabled by the 

presented approach is the high accessibility to significant spectral features of the fat 

fraction compared to (dried) whole milk samples when using ATR-FT-IR spectroscopy, as 

discussed in the previous section. We expect that even better results can be achieved with 

the herein presented approach of lipid separation followed by ATR-FT-IR spectroscopy 

when a larger number of different milk samples are available, indicating high potential 

for future applications. Finally, it should be noted that additional fatty acids were 

quantified using the GC/MS reference method, which were present at low concentrations 

(<2 g/100 g milk fat). However, due to the limited sensitivity of IR spectroscopy and the 

small sample set, it was not possible to obtain reliable prediction equations for these 

analytes. 

3.2.2. Selection of Wavenumber Range Based on Selectivity Ratio 

FT–IR spectra were recorded in the wavenumber range between 600 and 4000 cm−1 

in order to acquire the maximal amount of information within the mid-IR region. 
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However, for each PLS1 model, the applied spectral region was individually selected, 

based on the selectivity ratio (SR). The SR is a visualization tool to identify important 

variables in a multivariate data set for predicting the target variable. A detailed 

description and mathematical definition can be found elsewhere [34,44]. Briefly, it can be 

defined as the ratio between explained and unexplained variance for each variable of the 

model. In the case of mid-IR spectroscopy, the SR is useful for determining specific 

spectral features with high correlation to the parameter of interest [45]. 

In this work, the following wavenumber regions without relevant information 

regarding fatty acid composition were removed for all PLS models: 600–700, 1800–2750, 

and 3100–4000 cm−1. The remaining wavenumbers were individually selected for each 

target parameter. Figure 3 displays the included wavenumbers for each calibration model 

as calculated from the full dataset. Here, brighter regions indicate wavenumbers with low 

SR, whereas dark areas highlight those with high SR. The figure shows that the significant 

wavenumbers are highly different between sum parameters that describe fatty acid 

saturation degree and those that describe chain length. The wavenumber range close to 

3005 cm−1 has a high SR for SAT, MONO, and UNSAT, while this region is not important 

for predicting the chain length. This result seems reasonable, because the associated 

absorption band arises from the C–H stretching vibration of the cis double bond. 

Moreover, the spectral region between approximately 2700 and 3000 cm−1, covering 

several C–H stretching absorption bands, plays an important role in predicting the 

saturation degree. This relationship was also observed by Christy et al. [46], who 

predicted the saturation degree in different edible oils using ATR-FT-IR spectroscopy.  

The spectral range near 1643 cm−1, not accessible in transmission measurements of 

whole milk, also contains relevant information regarding the saturation degree. Even 

though the C=C stretching vibration of unsaturated carbonyl compounds is barely IR-

active [47], a weak related absorption band at approximately 1655 cm−1 can be observed 

in the ATR–IR spectra of some lipids. High SR in terms of saturation degree was also 

obtained in the spectral region between approximately 1050 and 1500 cm−1, which 

distinctly overlaps with other major components in whole milk transmission spectra. 

Moreover, the C–H out-of-plane band at 966 cm−1 and the C–H rocking band at 722 cm−1, 

inaccessible in transmission measurements using CaF2 windows, contain information 

regarding the saturation degree. PLS models predicting sum parameters concerning chain 

length showed particularly good results for MCFA and LCFA. Here, the spectral region 

below 1500 cm−1 especially contains several wavenumbers with high SR, indicating 

important information. The effect of fatty acid chain length on this spectral region was 

thoroughly investigated by Jones [48], concluding that various small band shifts appear 

with changing chain length. For predicting individual fatty acids, similar spectral features 

are important.  

Generally, fatty acids with high prediction accuracy, such as C10:0 and C18:1cis, 

show distinct wavenumber regions with high SR, while fatty acids with weaker 

prediction, such as C6:0 and C16:1cis, show lower SR. 

In conclusion, all spectral regions with medium and high SR can be assigned to 

absorption bands specific to fatty acids. This verification step is crucial in order to confirm 

that the information content of calibration equations is based on real absorbance of fatty 

acids rather than on incidental correlations. While important spectral features are well 

resolved in the ATR spectra of separated milk fat, a great part of them is hardly accessible 

or completely inaccessible in whole milk transmission spectra. This evaluation, involving 

the identification of relevant wavenumbers, thus demonstrates the benefit of using ATR-

FT-IR spectroscopy on the milk fat fraction. 



Foods 2021, 10, 1054 10 of 14 
 

 

 

Figure 3. Heatmap, showing spectral regions included for each PLS model in greyscale. Bright 

grey: selectivity ratio (SR) = 0–0.5; dark grey: SR = 0.5–5; black: SR = 5–15. The spectral range 

between 1850 and 2750 cm−1 was removed due to lack of relevant information. SAT: saturated fatty 

acids; MONO: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; UNSAT: 

unsaturated fatty acids; (C4–C10); MCFA: medium-chain fatty acids (C12–C16); LCFA: long-chain 

fatty acids (C17 and higher). 

3.2.3. Evaluation of Covariation Structures 

Due to the performed analysis of the milk fat fraction after separation from the milk 

matrix, the herein presented approach enables us to state the obtained results in terms of 

g fatty acid/100 g fat. When comparing the results to other works reporting on mid-IR-

based predictions of fatty acids in bovine milk, it should be noted that most authors stated 

their concentrations in g/100 mL of whole milk. However, it has been demonstrated that 

this good prediction accuracy is indirect, and primarily based on covariation between 

individual fatty acids and total fat content, whose dependencies may change with factors 

such as breed and feed [25]. Covariance is a measure of the degree of association between 

two random variables [49]. This issue was outlined by showing that PLS models 

calculated from the milk spectra of a specific cattle breed result in biased predictions when 

applied to another breed, due to different covariation structures. To further highlight this 

issue, prediction was performed using a calibration set compiled from skimmed milk 

spiked with three of the most abundant fatty acids at concentration values avoiding cross-

correlations. This approach resulted in significantly poorer models than those obtained 

for unspiked whole milk. Prediction models, calculated from the same samples, stating 

the relative fatty acid concentrations in g/100 g fat are, consequently, significantly weaker.  

The presented approach, based on ATR-IR measurements, does not have the purpose 

of providing information regarding total milk fat content, but rather of investigating the 

relative fatty acid profile. In this way, possible covariation structures to total fat content 

are inherently eliminated. Consequently, meaningful comparison to published results is 
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only useful for reports where the predicted fatty acid concentrations are also stated 

relative to milk fat content. Correlations between individual fatty acids are, however, still 

a great challenge in the spectroscopic prediction of milk fat composition. For this reason, 

Figure 4 shows a cross-correlation plot of the relative fatty acid content based on the GC 

results of the applied dataset. For this purpose, Pearson correlation coefficients indicate 

highly positive correlation (+1), no correlation (0) and highly negative correlation (-1). 

Here, positively correlated fatty acids are marked in red, whereas those of negatively 

correlated fatty acids are marked in blue. The plot reveals that most pairwise correlations 

are small, thus indicating that the predicted concentrations of these fatty acids resulted 

more from corresponding IR information than from correlations to other fatty acids. Short-

chain SAT with similar chain length (i.e., C6:0 and C8:0, C8:0 and C10:0) are, however, 

highly correlated. These correlations can also be seen in their similar SR profiles in Figure 

3. Consequently, grouping similar fatty acids into sum parameters (i.e., SCFA), as was 

done in this study, is highly beneficial in order to avoid high cross-correlations. Afseth et 

al. [26] observed comparable correlations between fatty acids in milk with similar chain 

length, and highlighted that these internal correlations can be used for reliable predictions 

as long as they are within some degree of certainty valid for future samples. 

 

Figure 4. Cross-correlation matrix of pairwise correlations between individual fatty acids from 

GC/MS reference measurements. Red color indicates positive correlation, whereas blue color 

indicates negative correlation. 

4. Conclusions 

In this work, a new mid-IR-based approach for predicting the fatty acid composition 

of bovine milk was introduced. A rapid, solvent free, two-step centrifugation method was 

employed in order to obtain representative milk fat fractions. Absorbance spectra of pure 

lipids were recorded using ATR-FT-IR spectroscopy, and compared to the transmission 

spectra of whole milk. Fatty-acid-related spectral features were distinctively better 

resolved in ATR spectra, highlighting the advantage of the preceding lipid separation 

step. PLS-based multivariate calibration models were calculated in order to relate IR 

absorbance spectra to relative concentrations of the most abundant fatty acids and sum 

parameters, obtained via a GC/MS reference method. Prediction efficiency was evaluated 
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by performing cross-validation on the full dataset, as well as by splitting the dataset into 

a calibration and a validation set. Both methods showed excellent results, indicating high 

robustness of the models. Particularly high prediction accuracies were obtained for SAT, 

MONO, UNSAT, MCFA, LCFA, C10:0, C12:0, C14:0, C16:0, C18:0, and C18:1cis. Based on 

a set of 45 milk samples, the obtained results were clearly better than those reported in 

literature for whole milk transmission spectra when concentrations were stated in g/100 g 

fat. The information content of the calibration equations was evaluated by identifying the 

most important spectral features for predicting individual target variables. Here, relevant 

wavenumbers were identified based on SR, and successfully assigned to absorbance 

bands from milk fat. Covariation structures between total fat content and predicted 

parameters, a common problem in IR-based milk fat profiling, were inherently eliminated 

with the applied approach. Consequently, the presented method bears several clear 

advantages over FT-IR transmission spectroscopy of whole milk, revealing its high 

potential for high-throughput applications. ATR-FT-IR measurements of pure milk fat, 

including cleaning procedures, can be performed in less than 2 min. When a high number 

of samples must be analyzed, the two centrifugation steps (30/20 min) can be performed 

in parallel, and the work flow optimized to provide maximum sample throughput. In the 

future, the calibration equations might be further improved by using a higher number of 

different milk samples, whereas additional automatization of the fat separation procedure 

could facilitate high-throughput operation. 

Supplementary Materials: The following are available online at www.mdpi.com/2304-

8158/10/5/1054/s1: Table S1: Retention time, quantifier and qualifier ions for each analyte of the 

applied GC/MS method; Table S2: Statistical parameters for each individual calibration equation, 

using a calibration set of 30 samples and a validation set of 15 samples. 
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