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A B S T R A C T   

Mechanistic model-based methods are indispensable tools for characterization, monitoring and control in bio-
pharmaceutical industry. However, the complexity of mechanistic models is restricted by the availability of 
process analytics. As a result, biological reactions are often lumped and only central metabolic pathways and 
extracellular analytics are considered. Moreover, due to process dynamics during typical batch and fed-batch 
cultivations, intracellular phenomena can often not be neglected. Typical examples are the Pasteur effect, 
Crabtree effect, and diauxic growth. A solution to this is to formulate discontinuous (piecewise) growth models 
and to incorporate metabolic switches expressed as logical operations. This contribution discusses the application 
of a piecewise kinetic growth model in the context of an industrial relevant case study. Targeted Saccharomyces 
cerevisiae lab scale experiments were conducted with different glucose and ethanol fluxes to trigger switches 
between metabolic pathways. We propose to use an event driven method to accurately identify the location and 
sequence of these switches, and the duration of active metabolic pathways during the time course of an 
experiment. It turns out that, compared with a standard implementation without active event location, the 
proposed approach leads to more accurate identification of switches and model parameters and thus, to more 
accurate model predictions.   

1. Introduction 

Mechanistic growth models: During the development of biotechno-
logical processes, mechanistic models play an essential role for effective 
experimental design [1–6], real-time monitoring and predictive control 
[7–11]. These models represent the knowledge of the underlying phys-
ical characteristics of the process and the physiological behavior of the 
organisms using mathematical expressions and model parameters 
[12–14]. Mechanistic models usually show better extrapolation 
compared to data-driven models [15]. They could predict quantities 
which are hard or costly to be measured, e.g., soft sensors [16], also, 
they are increasingly used in the frame of multi-objective control to 
promote increased selectivity of products [15], making them indis-
pensable tools in biotechnology. 

Mechanistic kinetic growth models use stoichiometric information, 
nonlinear reaction rates and mass and concentration balances [17–19], 
and are usually written as a set of deterministic and continuous Ordinary 
Differential Equations (ODEs). Unstructured models do not incorporate a 

detailed metabolic and physiological description of the organism. They 
are mainly used to predict the dynamics of cell density, viability, 
nutrient/metabolite concentrations, and product titer [20], without a 
detailed description of cell internal reactions or compartmentalization. 
Internal reactions are often lumped together and represented as one 
overall metabolic pathway. 

In contrast, structured models like metabolic flux analysis models or 
extended kinetic models derived from (genome-scale) metabolic net-
works [21] provide a more detailed mathematical description of the 
intracellular metabolic regulation and control. However, due to the 
complexity of the metabolic networks, the difficulty of measuring all 
metabolite concentrations, and the limited understanding of the reac-
tion sequences and enzymes involved in some areas of metabolism, their 
application in practice is still either impossible or very costly and 
demanding [12,21,22]. 

This is why, in the context of industrial biotechnology, model-based 
monitoring, control and characterization of microbial cultivations rely 
mainly on unstructured (or purely data-driven) models [23–25]. The 
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complexity of these models depends on the availability of process ana-
lytics, such as online gas analyzers, advanced tools such as automatic 
liquid handling and sampling, and hardware like HPLC (high--
performance liquid chromatography), NIR (near infrared spectroscopy) 
and FIA (flow injection analysis) [26]. A major challenge (addressed in 
this contribution) is related to the difficulty to parametrize and the 
reduced predictive capabilities of the models due to simplifications in 
modeling central metabolic pathways. 

Unstructured (or simplified structured) models primarily focus on 
the description of simplified pathways (e.g., product synthesis, oxidative 
growth, interconversion and degradation of components), and simpli-
fied biological transitions. However, in reality, transitions are mostly 
continuous, highly nonlinear, and dependent on metabolic regulation, 
gene expression, and other intracellular mechanisms, but as cell dy-
namics happen in very different timescales, most of the transitions are 
simplified into discontinuous behaviors. Therefore, switches expressed 
as logical operations often need to be incorporated in the model [27]. 
The result is a (discontinuous) piecewise growth model. Examples of 
such models are the models that describe the Pasteur effect [28], 
Crabtree effects [29], and diauxic growth, or the models that consider 
sudden external changes such as pulse feeding and culture induction. 

S. cerevisiae and pharmaceutical production: In the context of bio-
pharmaceutical production, S. cerevisiae, among other organisms, is a 
good production platform because of its fast growth rate, low cost of 
medium and downstream processing, its good secretory capacity [30], 
and the well-understood metabolism. It’s used to produce pharmaceu-
ticals like insulin, blood factors, and vaccines [30], and is recently used 
also for SARS-CoV-2 vaccine production [31]. 

Biopharmaceutical upstream production processes are usually split 
into three phases: (I) batch phase with pre-defined initial substrate and 
biomass concentrations, (II) fed-batch phase, where the substrate is 
added to the reactor, (III) and production phase which starts usually by 
an external inducer. The aim of the first two phases is to maximize 
growth to obtain a high amount of viable cells that are used for pro-
duction in the third phase. Aerobic growth is preferred as it assures 
highest biomass conversion yields and growth rates. The aim of the 
production phase is to maximize product titers and to provide a constant 
product quality for the subsequent process steps. 

Potentially accumulated ethanol in the medium is known to affect 
growth rate, as it reduces the mitochondrial membrane integrity and 
therefore impacts cell metabolism [32]. Therefore, for efficient phar-
maceutical bioprocesses, it is important to keep high growth rates 
without the formation of inhibitory by-products (ethanol in case of 
S. cerevisiae) to ensure high amounts of healthy viable cells for the 
production of the target product. One possible approach for that is to use 
the predictive power of growth models to optimize the process 
conditions. 

Solution methods: Discontinuous (piecewise) growth models can be 
mathematically expressed as a combination of a set of continuous dif-
ferential (and algebraic) equations with discontinuous right-hand side, 
and a set of time-dependent and/or state-dependent conditions, also 
referred to as event functions. If a condition is fulfilled, an event is 
triggered, and the model is switched. A switch can mean a change to 
another model structure, e.g., switching to a different growth model or 
to a different metabolic pathway. A switch can also mean an update of 
the system states, e.g., updating the reactor volume after sampling, or an 
update of model parameters, e.g., accounting for changes in cell affinity 
during time. The discrete nature of these phenomena can radically 
change the future evolution of the overall system behavior [33–35]. 

According to Dieci and Lopez [36], there are mainly two possible 
approaches to deal with ODEs with discontinuous right-hand sides: the 
time stepping method and the event driven method. 

The time stepping method simply ignores discontinuities and uses 
solvers for continuous initial value problems (IVPs). These solvers as-
sume sufficient smoothness of the right-hand side of the ODEs and rely 
on the local error estimator and the step size control techniques to keep 

errors in the generated approximate solution acceptably low [37]. 
Although this approach is very simple to be implemented, it can be 
expected to fail (or at least to become inefficient) in discontinuous re-
gions as the solution there violates the crucial assumption of smoothness 
[36]. 

In contrast, the event driven method locates discontinuities (defined 
as events [38]) using event functions which define discontinuity sur-
faces in the state space of the differential system. When the solution 
reaches a surface, an event is located. Thus, the solution is a result of a 
sequence of IVPs, described by differential equations and interspersed 
by instantaneous events that cause a discrete change to the initial value 
problem currently being solved [34], i.e., when the solution reaches an 
event, the solver updates states, parameters or the model structure and 
restarts at this point. Applications following this approach have been 
proposed for discontinuous problems in many fields; in mechanics (e.g., 
see [39,40]), electrical and control engineering (e.g., see [40–42]), 
chemical engineering and thermodynamics (e.g., see [33,43,44]), ecol-
ogy (e.g., see [45]) and neuroscience (e.g., see [27]), but are still limited 
in the bioprocessing context. 

Available software and algorithms: State of the art IVP solvers in 
MATLAB ODESUIT [46], or SUNDIALS [47] provide the option to 
monitor and locate time and/or state events using parameter dependent 
event functions. This is realized by a root finding algorithm where the 
event is defined by a change of sign in the function [48,49]. The user 
then specifies what is done when an event is found, i.e., the processing of 
events [49]. To account for the complexity of different events and 
switches, Park and Barton [38], proposed a general formulation where 
classical propositional logic is used for the representation of state con-
ditions as it can represent conjunctions and/or disjunctions of relational 
expressions effectively. This general formulation of models can be used 
in different modeling languages and software systems. A review on their 
application for the analysis of general differential and algebraic hybrid 
(continuous/ discrete) systems is given by Barton et al., [35], where the 
authors also discuss the consistent reinitialization after detection of state 
events, the parametric sensitivity analysis, and open problems related to 
systems with changing sequence of modes. More information and 
comparison of simulation tools for the analysis of hybrid systems, such 
as GPROMS, Modelica/Dymola, Assimulo, deSolve, Mathematica can be 
found for example in [39,50–54]. Fröhlich et al. [27] presented a recent 
review in the context of computational biology on available software 
toolboxes for the solution of differential systems with time or state (and 
possible parameter) dependent event functions. It turns out that most 
toolboxes consider only time-dependent events which can be triggered 
by external changes, such as changes to the reactor feed and are not 
useful for the consideration of state events that are triggered when 
certain critical cell internal conditions are reached. In addition, the 
authors also identify a lack of functionalities for sensitivity analysis with 
respect to parameters in the model and/or event functions and propose 
an extension of the maximum likelihood fitting criterion in order to 
account for model predictions with missing events. 

This contribution considers the recent work by Fröhlich et al. [27] on 
the identification of dynamical biological systems with discrete events 
and logical operations, where the authors present the development of a 
mathematical framework and provide an analysis on the accuracy of the 
numerical simulation and the benefit of accurate sensitivities for 
parameter estimation. While Fröhlich et al. present applications with 
rather simple examples (small linear or quadratic ODE’s) in neurosci-
ence and mRNA transcription, this contribution presents results from 
parameter estimation for a more complex nonlinear example for 
Saccharomyces cerevisiae yeast growth [55]. 

The model in this contribution consists of three different metabolic 
submodels and is fitted to data from targeted lab scale experiments 
where ethanol and glucose fluxes are indirectly controlled to trigger 
switches between different metabolic pathways. The paper highlights 
the consequences when not explicitly accounting for discontinuities 
during model implementation and its numerical solution. It turns out 
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that the solution might be heavily corrupted by noise which can affect 
not only the accuracy of simulation results but also the convergence of 
the model fitting algorithm. This has a negative impact on the identifi-
ability of the estimated parameters and increases the model prediction 
uncertainty. 

The novelty of this contribution lies in the systematic thorough 
quantitative analysis of the performance of the event driven method 
(EDM) in the context of a biotechnological process and the detailed 
presentation of a proposed state-of-the-art method for a sound imple-
mentation of a typical and well-accepted mechanistic growth model 
with discontinuous and continuous behaviors for a realistic industrial- 
relevant use case. 

Structure of the paper: Differential equation systems with disconti-
nuities and corresponding solution methods are summarized in Section 
2, this section also contains the model for yeast growth taken from [55], 
the model calibration procedure as well as details on the conducted 
experiments and the reference analytics. 

Section 3 presents the results. In Section 3.1 details are given on the 
numerical implementation following the proposed event driven method 
(EDM) and the time stepping method (TSM) to account for model dis-
continuities. In Section 3.2 the EDM is used for the model parametri-
zation of experimental data, considering the quality of the fits and the 
parameter identifiability. 

Section 3.3 presents the comparative analysis of the results obtained 
by TSM and EDM including the model prediction accuracy, parameters 
identifiability, convergence of the numerical algorithm for model fitting, 
and discusses practical aspects in a bioprocessing context. Finally, Sec-
tion 4 provides the discussion and conclusions. 

2. Methods 

2.1. Differential equation systems with discontinuities 

2.1.1. Time stepping method 
Time stepping methods are widely used for the solution of contin-

uous ordinary differential equation systems (ODEs). The simulation re-
quires the solution of an initial value problem (IVP) described as: 

ẋ(t) = f (x(t), u(t), θ ) with t ∈
[
t0, tf

]
(2.1)  

where t⫅R is the independent time variable, x(t) ∈ RNx is the vector of 
dependent state variables, u(t) ∈ RNu is the time-varying input vector, 
and θ ∈ RNp is the parameter vector. Initial conditions are given as 
x(t0) = x0. 

Using time stepping methods for the solution of ODEs with discon-
tinuous right-hand sides means to ignore the discontinuities. Time 
stepping methods rely on the local error estimator of the solver to ensure 
that the integration errors remain acceptably small. Therefore, in re-
gions where discontinuities of the solution or its derivative occur, the 
time stepping method may become either inaccurate or inefficient, or 
both. The reason is that the local error analysis of the step size control 
fails because there is not sufficient smoothness of the right-hand side of 
the ODE [36]. It is noted that modifications of these methods have been 
proposed to account for ODEs with discontinuities, see e.g., [36]. 
However, in this contribution, we refer to the “standard” time stepping 
method that uses the (standard) routines of the MATLAB ODE SUITE 
package for the solution of continuous ODEs without option for event 
handling. 

2.1.2. Event driven method 
Event driven methods use event functions, which define the occur-

rence of discontinuities in the state or time space of the differential 
system [36]. During numerical solution of the ODE, the exact locations 
of events are located by solving the conditions equations system outside 
the ODE system, and the numerical integration is restarted at this point. 
Barton and Pantelides [33] define the mathematical formulation for this 

simulation problem as a sequence of IVP’s interspersed by the occur-
rence of discontinuities (known as events): 

ẋ(k)(t) = f (k)
(
x(k)(t), u(k)(t), θ(k) ) with t ∈

[
t(k− 1), t(k)

)
∀k = 1…. , NCD

(2.2) 

In eq. (2.2) the time domain of interest 
[
t0, tf

]
is partitioned into NCD 

continuous subdomains 
[
t(k− 1), t(k)

]
. 

While the initial time t0 is given, the end of each sub-interval is 
determined by the occurrence of an event. Events are detected during 
the course of a simulation. The superscript k indicates that the set of 
variables and the set of equations may vary from subdomain to sub-
domain in a completely general manner. 

The model equations and initial conditions of the first subdomain are 
determined by an individual simulation description. For the succeeding 
subdomains they will be determined from a combination of the final 
state of the system in the preceding subdomain and the consequences of 
the corresponding event(s) [33]. 

Time and state events: Discontinuities in ODE models can either be 
defined by “implicit (or state) events” or by “explicit (or time) events”. 
In the first, the time of occurrence is not known in advance because it is 
dependent on the system fulfilling certain conditions. Therefore, the 
numerical solution of the equations must be advanced speculatively 
until the state condition becomes satisfied. In contrast, for explicit 
events the exact time of occurrence is known in advance. Thus, the so-
lution can proceed to these events in time order [33]. Both, implicit and 
explicit events can trigger (implicit or explicit) switches in the model 
structure, state variables or parameter values. These switches are trig-
gered by predefined conditional statements (or simply “conditions”) 
which for explicit switches are defined by exact time points and for 
implicit switches by a suitable threshold defined by the state variables 
and parameters. 

Conditions: Conditions or trigger functions define the time point of 
occurrence of an event. The general form of these conditions which can 
trigger both, time and state events, can be defined as: 

c(x(t), u(t), θ, t ) = 0 (2.3) 

In the standard mathematical description in eq. (2.3) the “critical 
threshold” of the condition is zero. However, as the condition c(⋅) is a 
general relation of states, controls and parameters, the critical threshold 
might also be represented by any other value including nonlinear re-
lations, e.g., for limiting concentrations or uptake rates. In contrast, 
conditions for explicit events (such as sudden changes in the reactor 
volume due to sampling) can be simply written as t − ts = 0. Details on 
the numerical implementation of the event-driven method can be found 
in Appendix A. 

2.2. Model fitting, identifiability analysis and uncertainty quantification 

The model is fitted to the experimental data by nonlinear regression 
considering the normalized residual sum of squares (NRSS) of the 
measured and predicted liquid and gas concentrations. For NL liquid 
concentrations which were measured in ML samples taken from the 
reactor at different time points, and for NG gas concentrations which 
were continuously monitored and evaluated at MG time points, and with 
θ as unknown parameter vector, the unconstrained and unbounded 
minimization problem reads: 

min
θ

ϕNRSS(θ) with  

ϕNRSS(θ) =
1

ML

∑NL

i=1

∑ML

j=1

(
Yi,j(θ) − Ym

i,j

)2

+
1

MG

∑NG

k=1

∑MG

l=1

(
Yk,l(θ) − Ym

k,l

)2
(2.4) 

Parameter initial guesses and estimates are given in Table 4. CO2 and 
O2 content in the off-gas was obtained from online gas analyzer and 
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mass flow measurements. The carbon evolution rate (CER) and the ox-
ygen uptake rate (OUR) were calculated from these measurements and 
considered in eq. (2.4). Glucose, ethanol and biomass liquid concen-
trations were measured offline by sampling, see section 2.4 for details. 

Fitting of the growth model and parameter identifiability analysis are 
carried out following the scheme of [56]. The scheme requires estimated 
parameters θ̂ and the corresponding sensitivity matrix S(θ̂). θ̂ are ob-
tained from repeated numerical solutions of a nonlinear regression, 
where the initial parameters of each run are defined by stochastic 
sampling in a reasonable parameter space around values taken from 
literature [55], [57]. The sensitivity matrix S̃ is obtained by normal-
izing S with the initial parameters and model output. Singular value 
decomposition (SVD) is used to detect any linear dependencies in S̃. By 
decomposing S̃ = UΣV ̀, Σ matrix is found which holds the singular 
values of S̃. The singular values in Σ are then used to calculate: 1- the 
condition number (κ) which is a measure of the sensitivity of model 

results to the perturbation of the parameters. 2- the collinearity index (γ) 
which quantifies the collinearity of the parameters. Empirical values for 
thresholds of κ and γ are chosen based on [58]. 

The parameters are ranked according to their linear independence 
and the above metrics are used to perform a parameter subset selection 
(SsS). The identifiable parameter subset simultaneously satisfies both 
sensitivity and linear independence conditions. Based on the results 
some parameters are set to active while the others are deactivated and 
not considered for nonlinear regression. The solution of the nonlinear 
regression problem and the SsS are computed repeatedly until conver-
gence to the best overall parameter values. 

Parameter’s uncertainty quantification: The uncertainty of the pa-
rameters is analyzed using bootstrapping technique [59], which in-
volves resampling of the experimental data and re-estimation of the 
parameters. For each experiment 500 Monte Carlo (MC) datasets are 
generated based on the measurement’s uncertainty. The perturbation is 
chosen to be three standard deviations of the nominal values of the error 
for each measurement device for both liquid concentrations and off-gas 
signals. The measurement error (normal non-correlated error, given as 
three standard deviations) for biomass is 5%, for ethanol 4%, glucose 1, 
3% and for the off-gas is 3.75%. The model is fitted, and parameters are 
estimated for all 500 datasets individually. The probability distribution 
of the resulting 500 parameter estimates is assumed to be normal. The 
95% parameter confidence regions are used to quantify the accuracy of 
the estimates. 

Convergence analysis: Bootstrapping is also used to analyze the 
convergence of the parameter estimation algorithm for the solution of 
eq. (2.4). For each experiment a set of 500 Monte Carlo (MC) datasets is 
generated based on the measurement’s uncertainty (same as above). In 
addition, the initial guesses of the parameters were perturbed. The 
perturbations are chosen by uniform sampling in a ±10%, ±30% and 
±50% interval around the parameters’ nominal values which were 
defined by the best estimates. The model is fitted 500 times and the 95% 
parameter confidence regions are calculated. The confidence regions are 
used as a measure for the robustness of the convergence of the fitting 
algorithm. 

Prediction uncertainty: The distribution of the simulated output is 
calculated by a sampling considering the 500 parameter estimates from 
the convergence analysis. Results in Section 3.3.1 are given for ±30% 
perturbation of the initial parameter guess. The depicted ranges of the 
prediction uncertainty correspond to ±2σ (95% confidence interval). 

The calculated parameters and prediction uncertainties as well as the 
results of the convergence analysis are affected not only by perturba-
tions in the measured data sets but also by possible errors in the 
approximate numerical solution of the model. As mentioned before, 
using TSM the accuracy of the numerical solution might be low as the 
errors in the event location are not controlled. As a consequence, the 
solution of the model can be corrupted by significant “numerical noise”, 
and the parameter estimation problem is characterized by so-called 
“noisy functions” [60]. Applying bootstrapping and repeatedly solving 
the parameter estimation problem the results depend on two factors: the 
perturbations in the measurements, and the numerical noise in the 
model prediction. Using bootstrapping technique, the impact of both 
factors is analyzed for the TSM and EDM. 

2.3. Hardware and software 

All computations were carried out in MATLAB R2017b on an Intel (R) 
Xeon(R) (CPU E5–2690 V4@ 2.60 GHZ) with 64 GB RAM using 64x-bit 
operating system. Parallel processing is used. The ODEs (initial value 
problems) have been solved using MATLAB “ODE suite”, mainly by 
ODE15S solver. On average, the computation time for one simulation 
using the solver’s default settings for the absolute and relative error 
tolerances, takes roughly 1.6 [s] for EDM, and 1.4 [s] for TSM. A 
detailed comparison of the computation times is given in Appendix E. 
The unconstrained nonlinear regression problem eq. (2.4) was solved 

Table 1 
List of symbols.  

Term Description Unit 

α1  Consumed O2 for oxidative growth on glucose mol/mol 
α10  Produced biomass for oxidative growth on ethanol mol/mol 
α11  CO2 yield for oxidative growth on ethanol mol/mol 
α12  H2O yield for oxidative growth on ethanol mol/mol 
α2  Produced biomass for oxidative growth on glucose mol/mol 
α3  CO2 yield for oxidative growth on glucose mol/mol 
α4  H2O yield for oxidative growth on glucose mol/mol 
α5  Produced biomass for fermentative growth on glucose mol/mol 
α6  CO2 yield for fermentative growth on glucose mol/mol 
α7  H2O yield for fermentative growth on glucose mol/mol 
α8  Ethanol yield for fermentative growth on glucose mol/mol 
α9  Consumed O2 for oxidative growth on ethanol mol/mol 
Ce  Ethanol concentration g/L 
Cs,in  Glucose concentration in the feed g/L 
Cs  Glucose concentration g/L 
CX  Biomass concentration g/L 
CER  Carbon dioxide evolution rate mol/h 
FAcid  Acid feed rate L.h− 1 

FBase  Base feed rate L.h− 1 

Fgas  Gas in/out flow L.h− 1 

FS  Glucose feed rate L.h− 1 

HX  Mass fraction of hydrogen in biomass mol H/mol C 
Ke  Time affinity constant of the ethanol g/L 
Ki  Inhibition parameter of ethanol consumption because of 

glucose 
g/L 

Ks  Time affinity constant of the glucose g/L 
μtotal  Total growth rate h− 1 

Mwe  Molecular weight of the ethanol g/mol 
Mws  Molecular weight of the glucose g/mol 
Mwx  Molecular weight of the biomass g/mol 
NX  Mass fraction of nitrogen in biomass mol N/mol C 
OUR  Oxygen uptake rate mol/h 
OX  Mass fraction of oxygen in biomass mol O/mol C 
qO2  Specific oxygen uptake rate per unit of biomass mmol⋅h− 1⋅g− 1 

qs  Specific glucose uptake rate per unit of biomass g⋅h− 1⋅g− 1 

qe  Specific ethanol uptake rate per unit of biomass g⋅h− 1⋅g− 1 

V  Liquid volume L 
Yo2/e  Oxygen (stoichiometric) yield on ethanol mmol/g 
Yo2/s  Oxygen (stoichiometric) yield on glucose mmol/g 
Ye/s  Ethanol (stoichiometric) yield from glucose 

fermentation 
g/g 

Yx/e(ox) Biomass yield for oxidative growth on ethanol g/g 
Yx/s(ox) Biomass yield for oxidative growth on glucose g/g 
Yx/s(red) Biomass yield for reductive growth on glucose g/g  
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using MATLAB’s “Optimization Toolbox” lsqnonlin/trust-region- 
reflective algorithm. 

2.4. Fed-batch experiments 

Three Saccharomyces cerevisiae (wildtype, CBS8340) experiments 

were conducted in a 3 L aerated and stirred glass-reactor (Infors AG, 
Switzerland). The reactor temperature was controlled at 30º C using a 
water jacket heating system. Experiments were realized in aerated (1,5 
vvm compressed air) batch (starting with roughly 1.5 L medium), and a 
subsequent fed-batch cultivation was used with different glucose feed 
rates to reach subcritical and supercritical glucose fluxes (qs). Stirring of 
the medium is considered, implying the fermentation media is homo-
geneous. Fermentation initial concentrations and feeding characteristics 
are shown in Table 2. Exact media composition and process conditions 
are shown in Appendix B; Table B.1 and B.2. 

For online analytics, CO2 and O2 content in the off-gas was measured 
by a gas analyzer (BlueVary, Bluesens GmbH, Germany) using infrared 
and paramagnetic principle. The conversion of O2 to CO2 was calculated 
by the difference between mass inflow and outflow, assuming an equi-
librium between liquid and gas phase, giving the carbon evolution rate 
(CER) and the oxygen uptake rate (OUR) in mol/h [61]. 

For offline analytics, glucose, ethanol and biomass concentration 
were measured. Samples were taken both manually and by an auto-
sampler at irregular basis and the sample volume (ranging from 
~4–20 mL) was logged. Sugar and ethanol concentrations of the filtered 

Table 2 
Fed-batch experimental conditions given as initial biomass and glucose con-
centrations CX0 and CS0, glucose feed concentration Cs,in, feed start time t0,feed, 
duration of overfeeding toverfeed, and total volume of all samples taken.  

No. CX0 

[g/L]  
CS0 

[g/L]  
Cs,in 

[g/L]  
t0,feed[h]  toverfeed[h]  Total 

sampling 
volume [L] 

Experiment 
1  

0.7  18.9  220  15  1  0.25 

Experiment 
2  

0.5  19.9  200  16.3  1.8  0.3 

Experiment 
3  

0.5  18.7  198  15.7  2.1  0.39  

Fig. 1. Bioreactor image, and scheme indicating all 
collected data to simulate and to parametrize the model. 
Time-dependent inputs are determined as glucose, acid and 
base feed rates and are calculated from the respective 
balance signal (mGlucose, mAcid, mBase). Online CER and OUR 
is calculated based on gas composition (XCO2, XO2) in the 
off-gas stream as well as input gas stream (Fair) and oxygen 
content (FO2). Biomass, ethanol and glucose concentrations 
(CS, CX, Ce) are measured from offline samples.   

Fig. 2. The “bottleneck” concept in Sonnleitner and Käppeli [51] yeast fermentation model. If the sum of substrate fluxes does not exceed, or equals, the cell’s 
maximum oxidative uptake rate (shown as two rings in the figure), then the flux is subcritical, or critical, (left). If the glucose flux is higher than the maximum 
oxidative uptake rate, then the flux is supercritical. The residual part of glucose is metabolized reductively to produce ethanol (right). If the sum of substrate fluxes 
exceeds the maximum oxidative uptake rate then the flux is supercritical, but ethanol uptake is limited to the maximum oxidative capacity (middle). 
The figure is adapted from [55]. 
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supernatant were analyzed by HPLC (Thermo Fischer, USA) with a 
Supelco gel C-610 H ion exchange column (Sigma-Aldrich, USA) and a 
refractive index detector (Thermo Fischer, USA). The mobile phase was 
0.1% H3PO4 with a constant flow rate of 0.5 mL/min at a temperature of 
4 ◦C. Biomass concentration was determined gravimetrically by sepa-
rating the cells from 5 mL culture broth via centrifugation at 4800 rpm 
for 10 min at 4 ◦C. The cell pellet was dried at 105 ◦C after a washing 
step with 5 mL of water in weighted glass tubes and the weight of the 
dried pellet was determined on an analytical balance. Fig. 1 shows a 
scheme of the used setting. 

2.5. Growth model of S. cerevisiae 

In Sonnleitner and Käppeli [55] yeast fermentation model, the au-
thors describe how Saccharomyces cerevisiae grows using different 
metabolic pathways. Three reactions (metabolic routes) are distin-
guished by the following equations with the stoichiometric coefficients 
(α1-α12): 

-Oxidative conversion of glucose (into biomass and CO2) 

C6H12O6 + α1 O2 + α2 NX [NH3] →α2ClHHXOOXNNX + α3CO2 +α4 H2O
(2.5) 

-Reductive conversion of glucose (into biomass, CO2 and ethanol) 

C6H12O6 + α5 NX [NH3]→ α5 ClHHXOOXNNX + α6CO2 +α7 H2O + α8 C2H6O
(2.6) 

-Oxidative conversion of ethanol (into biomass and CO2) 

C2H6O+α9O2 +α10 NX [NH3]→α10 ClHHXOOXNNX + α11CO2 + α12 H2O
(2.7) 

The formula ClHHXOOxNNX denotes the biomass, where the molecular 
composition HX, OX, NX can be determined by elemental analysis of the 
dried biomass. Note that it is assumed that the elemental compositions 
of ethanol-grown biomass and glucose-grown biomass are the same as 
the difference is within the analytical errors [62]. The yield coefficients 
Yx/s(ox),Yx/s(red) and Yx/e(ox) are determined as model parameters by fitting 
the model predictions to the measurements. The stoichiometric co-
efficients α2, α5, and α10, can be determined retrospectively, assuming 
that the molecular weights (Mw) of biomass, glucose and ethanol are 
known using the relations: Yx/s(ox) = α2Mwx/Mws, Yx/s(red) =

α5Mwx/Mws, Yx/e(ox) = α10Mwx/Mwe. All remaining stoichiometric co-
efficients in eqs. (2.5),(2.6) and (2.7) and the corresponding (stochio-
metric) yield coefficients that are used later (YO2/s, YO2/e and Ye/s) can be 
determined by considering the elemental balance of carbon, oxygen, and 
hydrogen and solving a linear system as described in [55] (see 
Appendix B). The values of αi are later used in Eqs. (2.19) and (2.20). 

The specific uptake rates of glucose (substrate) qs, ethanol qe and 
oxygen qO2 are assumed to follow Monod kinetics: 

qs = qmax
s

Cs

Cs + Ks
(2.8)  

qe = qmax
e

Ce

Ce + Ke
⋅

Ki

Ki + Cs
(2.9)  

qO2 = qmax
O2

Co

Co + Ko
(2.10) 

where qmax
s , qmax

e and qmax
O2 

represent the maximum rates with the 
respective half saturation rates Ks, Ke and Ko in dependence of the 
respective concentrations Cs, Ce and Co. In addition, ethanol uptake is 
inhibited by glucose concentration Cs via competitive inhibition with Ki 

as an inhibition constant. 
The main concept to switch between these regimes is the “bottleneck” 

of the respiratory capacity of the cells. The maximum glucose oxidation 
capacity qmax

s(ox) is determined by the current oxygen uptake and the 

stoichiometric conversion yield YO2/s: 

qmax
s(ox) =

qO2

YO2/s
(2.11) 

Based on qmax
s(ox) it is possible to differentiate between subcritical/ 

supracritical substrate flux. The bottleneck to select between a rate lim-
itation by oxygen and substrate availability can be written as: 

qs ≤ qmax
s(ox) (2.12) 

If (2.12) is fulfilled, then the substrate flux is subcritical and can be 
entirely converted by the oxidative pathways, qs(ox) = qs is given by Eq. 
(2.8), i.e., the actual rate qs(ox) is equal to the specific rate. Moreover, 
whether or not ethanol is present in the medium, no reductive reaction 
happens and therefore neither ethanol production nor fermentative 
growth exists, i.e., qs(red) = 0, according to eq. (2.6). Similar to glucose, 
maximum ethanol oxidation capacity can be computed as: 

qmax
e(ox) =

qO2 − YO2/s ⋅ qs(ox)

YO2/e
(2.13) 

were qs(ox) is the oxidatively consumed glucose. YO2/s and YO2/e are 
the respective O2 stoichiometric conversion yields for glucose and 
ethanol. Similar to glucose oxidation two cases can be distinguished for 
the ethanol consumption: 

qe ≤ qmax
e(ox) (2.14) 

If (2.14) is fulfilled, then ethanol can be oxidized at current 
maximum rate qe(ox) = qe as described in equation (2.9). Otherwise, the 
potential ethanol flux exceeds the oxidative capacity, and ethanol up-
take rate qe(ox) is limited to maximum oxidative capacity qe(ox) = qmax

e(ox). 
On the other hand, if: 

qs > qmax
s(ox) (2.15) 

then glucose substrate flux is higher than the oxidative capacity, and 
growth based on glucose corresponds to maximum possible oxidative 
capacity qs(ox) = qmax

s(ox), the remaining sugar uptake is reduced to ethanol 
and can be determined by: 

qs(red) = qs − qmax
s(ox) (2.16) 

Once the cells are in the reductive pathway, ethanol cannot be used 
as a substrate for growth anymore qe(ox) = 0. 

Overall, the model considers an “oxidative” growth by a co- 
metabolized glucose and ethanol under the conditions of subcritical 
substrate flux (reaction routes in eqs. (2.5) and (2.7)), “oxidoreductive” 
growth under aerobic conditions of critical and supracritical glucose flux 
(eqs. (2.5) and (2.6)), and “reductive“ growth under anaerobic conditions 
only (eq. (2.6)). 

Based on the selected regimes the overall growth can be expressed by 
the usage of the respective conversion yields of the single pathways: 

μtotal = Yx/s(ox).qs(ox) + Yx/s(red).qs(red) + Yx/e(ox).qe(ox) (2.17) 

The mass balances for a fed-batch reactor with a glucose feed, 
assuming an open system, isothermal operation and homogenous me-
dium result in the following system of ODE’s: 

dCx

dt
= μtotal⋅Cx −

Fs

V
⋅Cx  

dCs

dt
= −

(
qs(red) + qs(ox)

)
⋅Cx −

Fs

V
⋅Cs +

Fs

V
⋅Cs,in  

dCe

dt
=

(
Ye/s⋅qs(red) − qe(ox)

)
⋅Cx −

Fs

V
⋅Ce  

dV
dt

= FS + FBase + FAcid − Fsampling (2.18) 
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Based on the derived stoichiometric coefficients in eqs. (2.5),(2.6) 
and (2.7), produced carbon dioxide (CER) and oxygen uptake (OUR) can 
be added as additional model outputs: 

OUR =

(

qs(ox)⋅α1
Mwo2

Mws
+ qe(ox)⋅α9

Mwo2

Mwe

)

Cx⋅V (2.19)  

CER =

(

qs(ox)⋅α3
Mwco2

Mws
+ qe(ox)⋅α11

Mwco2

Mwe
+ qs(red)⋅α6

Mwco2

Mws

)

Cx⋅V

(2.20) 

The Respiratory Quotient (RQ), which is considered a valid indicator 
for different metabolic pathways [59], is defined as: 

RQ =
CER
OUR

(2.21) 

A RQ greater than one indicates that the S. cerevisiae is producing 
ethanol by Crabtree effect (oxidoreductive growth). A RQ close to one 
indicates that glucose is mostly oxidatively consumed. RQ values around 
2/3 indicate ethanol oxidative consumption. Summing up, the ODE 
model includes biomass, substrate and ethanol concentrations, and 
volume as states x(t). Glucose, acid and base addition are considered as 
time-dependent inputs u(t). Initial estimates of the model parameters (θ) 

are taken from [55,57] and given in Table 4. Table 1 shows all symbols 
and meanings. 

3. Results 

3.1. Growth model implementations 

Section 3.1 discusses the implementation of the kinetic growth 
model of S. cerevisiae (Section 2.5) which describes growth on three 
different pathways. Two methods for the implementation of the ODE 
system are used (see Section 2.1 for details): 

(I) time stepping method (TSM): uses the routines of the MATLAB 
ODESUITE package without event detection option. 

(II) event driven method (EDM): uses the routines of the MATLAB 
ODESUITE package with an event detection option. This means that, 
during the solution of the ODEs, conditions are monitored, and corre-
sponding events are detected using MATLAB’s ODE event location al-
gorithm. If an event is detected, the integration is terminated, and the 
model is switched. The integration is then restarted with the new sub-
model and/or adapted initial conditions. 

Fig. 3 shows in detail the computational schemes of both methods. 

Fig. 3. Computational schemes of the standard time stepping method (TSM) and the proposed event driven method (EDM). The EDM scheme accounts explicitly for 
any discontinuities in the model by monitoring conditions and switching to the corresponding submodels (or updating state values). 
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3.1.1. Model implementation following the time stepping method 
For TSM, the implementation of different submodels is straightfor-

ward using the standard programming language expressions. For the 
conditions equations (2.12) and (2.14), extrema functions {MIN ,MAX}, 
or alternatively conditional statements {if, switch, while, match…} 
[63–65] are used. The generic syntax for the equations (2.12) and (2.14) 
are written for example as: 

qs(ox) = MIN
(

qs, qmax
s(ox)

) ⃒
⃒
⃒ qe(ox) = MIN

(
qe, qmax

e(ox)

)
(3.1)  

or: 

If
(

qs ≤ qmax
s(ox)

)

qs(ox) = qs

else
qs(ox) = qmax

s(ox)

end

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

If
(

qe ≤ qmax
e(ox)

)

qe(ox) = qe

else
qe(ox) = qmax

e(ox)

end

(3.2) 

It is noted that for eqs. (3.1) and (3.2), the only difference is the 
syntax; the execution of both statements gives the exact same results. 

Sampling volumes are incorporated in the model simply by consid-
ering “sampling” flow rate Fsampling (i.e., flow negative pulse signal) in eq. 
(2.18). As the changes in the overall volume over time is calculated as 
the difference between input and output flow rates [12], it is widely 
accepted to consider sampling volume Fsampling as a part of the flows that 
are leaving the reactor [65–67]. 

In the TSM method, the conditional statements are computed at each 
evaluation time point of the ODE solver. While the time steps are 
adaptively chosen based on the integration error estimate, there is no 
active control on the location of events. The solver is therefore likely to 
miss the exact time point when a switch between metabolic pathways 
occurs, or the samples are taken. In addition, in the TSM implementation 
positivity of the ODE solution is not enforced. 

3.1.2. Model implementation following the event driven method 
The kinetic growth model by Sonnleitner and Käppeli [55] describes 

how Saccharomyces cerevisiae grows based on different metabolic path-
ways, i.e., regimes with different substrate uptake. Switches between 
these pathways are triggered by events. They are actively located by 
monitoring of the conditions (2.12) and (2.14), whose threshold is given 
by equations (2.11) and (2.13), respectively. 

Adopting the event driven method (given in Section 2.1.2) requires 
the model to be separated into: a) conditions and b) submodels. 

The growth model including the three metabolic pathways (as three 
submodels) can be represented by the general mass balances equations 
(2.18) written in matrix form as: 

where the conversion matrix containing the yield coefficients is 
multiplied by the reaction vector containing the current reaction rates q 
(t). A ∈ RNq×Nq is the activation matrix, whose elements {1,0} are used 
to activate/deactivate submodels. Table 3 shows all possible submodels, 
the corresponding diagonal elements of A , and the selection criteria. 

The selection process is illustrated as a decision tree in Appendix C. The 
Boolean trigger function C 1(t) considering condition (2.12) reads: 

C 1(t) :=

⎧
⎨

⎩

1,
0,

if qs(x(t), u(t), θ, t ) − qmax
s(ox)(x(t), u(t), θ, t ) ≥ 0

if qs(x(t), u(t), θ, t ) − qmax
s(ox)(x(t), u(t), θ, t ) < 0

⎫
⎬

⎭

(3.4) 

The Boolean trigger function C 2(t) considering condition (2.14) 
reads: 

C 2(t) :=

⎧
⎨

⎩

1,
0,

if qe(x(t), u(t), θ, t) − qmax
e(ox)(x(t), u(t), θ, t) ≥ 0

if qe(x(t), u(t), θ, t) − qmax
e(ox)(x(t), u(t), θ, t) < 0

⎫
⎬

⎭
(3.5)  

3.1.2.1. Accounting for additional discontinuities and non-physical solu-
tions in the model. Non-physical solutions and highly nonlinear kinetic 
terms: Nonlinear kinetic models such as Monod-type growth models can 
exhibit stiff behaviors, especially when the affinity of the microorgan-
isms to the used substrates is high [12], and the affinity constant (K) is 
small (roughly < 0.2). While these models predict a maximum growth 
rate for most substrate concentrations, rate limitation occurs in a very 
limited substrate range close to 0 and the reaction is stopped at zero 
concentration. Accordingly, the growth rate curve exhibits a very steep 
slope for low substrate concentrations whereas it is almost constant 
elsewhere. For changing substrate concentrations, from low to high, or 
vice-versa, the steepness of the response appears to change suddenly, the 
model shows an “almost-discontinuous” behavior. In addition, while 
Monod is defined for positive substrate concentrations, for negative 
concentrations it gives non-physical solutions, i.e., positive rates below 
− K and negative rates between − K and 0. Because of this, an 
often-encountered issue in the numerical solution of ODEs with 
Monod-type models are the negative substrate concentrations. The 
consequences range from inaccuracies in the computed model pre-
dictions, to instability of the ODE model which might lead to simulation 
failure. These non-physical solutions can be avoided by following the 
event driven implementation [68]. It is noted that some ODE solvers, 
such as in the SUNDIALS ODE suite [47], directly provide an option for 

Table 3 
Selection of submodels according to the state of the Boolean trigger functions 
(True or False) and corresponding values of the activation matrix A in equation 
(3.3).  

Metabolic pathway 
(activated sub-model) 

Trigger function Activation Matrix 
A (C (t) )

C 1(t) C 2(t)

A - Glucose and Ethanol oxidation 
(The sum of fluxes is less or equals the 
maximum oxidative uptake rate) 

TRUE TRUE A =

diag[1 0 0 1 0]

B - Glucose and Ethanol oxidation 
(The sum of fluxes exceeds the maximum 
oxidative uptake rate. Ethanol uptake is 
limited to the maximum oxidative 
capacity) 

TRUE FALSE A =

diag[1 0 0 0 1]

C- Crabtree effect 
(oxidoreductive pathway) 

FALSE TRUE A =

diag [0 1 1 0 0]FALSE FALSE  

d
dt

⎡

⎣
Cx
Cs
Ce

⎤

⎦ =

⎡

⎣
Yx/s(ox) Yx/s(ox) Yx/s(red) Yx/e(ox) Yx/e(ox)
− 1 − 1 − 1 0 0
0 0 Ye/s − 1 − 1

⎤

⎦⋅A ⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qs

qmax
s(ox)

qred
s

qe

qmax
e(ox)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Cx − D

⎡

⎣
Cx
Cs
Ce

⎤

⎦+
Fs

V

⎡

⎣
0

Cin
0

⎤

⎦ (3.3)   
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the computation of non-negative solutions. However, some MATLAB’s 
ODE solvers for stiff and nonlinear problems such as ODE23S and 
ODE15i, do not provide this option. Therefore, corresponding zero 
crossing conditions (state events) were considered in the EDM 
implementation. 

Feeds and samples: Volume changes of an ideal stirred reactor are 
usually modeled by mass balance (differential) equations. In fed-batch 
fermentation, the measured flow rates (except FSampling) usually show 
comparatively smooth curves. These curves are represented by discrete 
signals and can be transformed to smooth functions with relatively little 

Fig. 4. Fitting the model following the EDM implementation to data from experiment 1. Above: Trigger functions (blue) and condition thresholds (dotted line). 
Detected events (blue line crosses dotted line) trigger a switch between submodels. Submodel C indicates a metabolism described by the Crabtree effect, submodel B 
indicates oxidative growth on glucose and limited uptake rate of ethanol, submodel A indicates normal oxidative growth on ethanol and glucose. Below: Simulated 
and measured liquid and off-gas concentrations, feed signal and RQ signal. Because the metabolic activities between ~13 − 15 [h] stop, OUR and CER are almost 
zeros, and the ratio RQ is unreliable. Therefore, RQ is not shown in this time-window. 
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effort, e.g., by applying a smoothing filter and by subsequent interpo-
lation using piecewise spline interpolation. Avoiding discontinuities on 
the right-hand-side of eq. (2.18) can significantly improve the efficiency 
and accuracy of its solution [69], [70]. Hence, the volume changes due 
to sampling are modeled as instantaneous changes using time events and 
switches in the volume Vnew = Vold − ΔVsampling, and the term Fsampling in 
eq. (2.18) therefore is omitted. 

All conditions for metabolic switches, non-physical solutions and 
sampling are combined in one vector of switching conditions which are 
monitored for any root. 

3.2. Model fitting adopting the event driven method 

Fig. 4 shows results of the first S. cerevisiae fed-batch cultivation. The 
model was fitted simultaneously to the data of all three experiments 
using EDM. The model parameters are given in Table 4. Overall, five 
events were detected (Fig. 4 upper part). This means that after initiali-
zation of the simulation with submodel C, the following submodels were 
activated sequentially: B, A, C, B, A. 

From the simulated and measured data shown in Fig. 4 (and later in 
Fig. 5 for the three experiments) the following conclusions can be 
drawn, during the batch phase (roughly between 0 and 15 h), three 
different phases were recognized: 

I) From the beginning of the fermentation with glucose concentra-
tion being at maximum until the point of glucose depletion that 
limits the glucose inflow, cells metabolize glucose both oxida-
tively and reductively, leading to the so-called “Crabtree effect” 
(metabolic pathway C) also indicated by a high RQ.  

II) Directly after glucose depletion, the previously produced ethanol 
is oxidized (metabolic pathway B). The metabolic transition be-
tween these first two phases is associated with an instant drop in 
CER whereas OUR remains unchanged due to the usage of the full 
oxidative capacity of the cells and leads to a RQ below 1. 

Upon ethanol depletion, metabolic activity stops (OUR and CER ~ 0) 
and the model changes to glucose oxidation (metabolic pathway A), 
which is set as the default. After the end of the batch phase, different 
feeding phases were started (15–23 h):  

III) After feed start (~15 h) subcritical glucose flux (metabolic 
pathway A) is aimed by a small exponential ramp. An RQ of ~1 
indicates that glucose consumption is purely oxidative.  

IV) After that, an increased glucose feed leads to ethanol formation 
through the “Crabtree effect” (metabolic pathway C) similar to 
time window (I) but for a shorter time.  

V) After sensing significant ethanol accumulation, the feed is 
changed to subcritical glucose fluxes and co-utilization of pro-
vided glucose and the produced ethanol can be observed (RQ < 1 

Fig. 5. Fitting the model to data from experiment 1, 2, and 3. The black solid lines and markers represent measurements, the colored lines represent the best fit 
(reference solution obtained by EDM). Uncertainties in the model predictions and in the location of switches between submodels are depicted by shaded areas for 
TSM (pale) and EDM (dark). The prediction uncertainty is obtained by a sampling considering the uncertainty in the parameter estimates, see section 2.2 for details. 

M.A. Jouned et al.                                                                                                                                                                                                                              



Biochemical Engineering Journal 180 (2022) 108345

11

& metabolic pathway B). After depletion of ethanol only the 
added glucose is metabolized (RQ ~1 & metabolic pathway A). 

The model predictions are well aligned with measured concentra-
tions and the off-gas signals with an overall normalized root-mean- 
square error below 4.5%. The location of switches and the identified 
submodels are in good accordance with the indications by the computed 
RQ, compare the switches between the identified submodels (Fig. 4 
above) with the computed RQ values (Fig. 4 below). 

When RQ is greater than 1, cells are, in parallel to the oxidative 
route, also consuming glucose in a fermentative regime causing ethanol 
production (metabolic pathway C). When RQ ≈ 1, this is a clear indi-
cator of purely glucose consumption in an oxidative regime (corre-
sponding to metabolic pathway A at higher glucose concentrations, and 
B at lower ones). RQ ≈ 2/3 is a clear indicator of purely ethanol con-
sumption in an oxidative regime (metabolic pathway B at higher ethanol 
concentrations, and A at lower ones). 

The simulation results imply an immediate change in cell meta-
bolism after each event. This is due to the assumption of Sonnleitner and 
Käppeli’s that cells can instantaneously change between metabolic 
pathways. Although some authors prefer to consider adaptation times 
after metabolic changes [57], it was reported that cells remain bio-
chemically active during these times but cell division is highly affected 
[71]. Therefore, we restrict ourselves to the Sonnleitner and Käppeli’s 
assumption, as this discussion goes beyond the paper’s purpose. 

The results from the parameter identifiability analysis and uncer-
tainty quantification of the three experiments are shown in Table 4. Nine 
parameters are considered and ordered starting with the most identifi-
able parameters. Five parameters are selected as identifiable. It is noted 
that the same ranking and selection was also found for the individual 
fitting of the two different experiments considered in the following 
subsection. An interesting finding is that qmax

e is not identifiable 
although it plays a role in one of the conditions (see eq. (2.13)), the 
reason might be the direct correlation between qmax

e and Yx/e(ox) in eq. 
(2.17). Hence, only one of both parameters is uniquely identifiable. 

A detailed analysis of the impact of uncertainties in the parameter 
estimates is given in section 3.3.3. 

3.3. The advantages of using the event driven method over the time 
stepping method 

Section 3.3 presents results for all three experiments. Note that the 
best fitting results obtained from the EDM are here referred to as the 
reference solution. Corresponding parameter estimates are reported in 
Table 4. 

Table 4 
Parameter identifiability analysis and parameter uncertainty quantification 
considering data from experiment 1, 2, 3 and following the event driven method 
for model implementation. The subset selection method selects the identifiable 
parameter subspace. Non-identifiable parameters are fixed to their initial guess 
values and are not considered in the fitting problem. The lower bound of the 
confidence interval (LB-CI) and upper bound of the confidence interval (UB-CI) 
of the parameters are presented for 95% confidence interval ( ± 2σ). The symbol 
%σ represents the relative standard deviation of the estimated parameters.    

Identifiability 
analysis 

Uncertainty quantification  

Initial 
guess 

Parameter subset 
Selection 

Estimated 
value μ   

%σ   LB-CI UB- 
CI 

qmax
s   3.5 Identifiable, 

Active  
1.68 3.52 1.56 1.80 

qmax
O2   

7.5 Identifiable, 
Active  

8.70 2.94 8.24 9.26 

Yx/s(red) 0.05 Identifiable, 
Active  

0.10 25.74 0.048 0.15 

Yx/s(ox) 0.5 Identifiable, 
Active  

0.53 5.94 0.46 0.59 

Yx/e(ox) 0.72 Identifiable, 
Active  

0.4 3.62 0.37 0.43 

qmax
e   0.24 Not identifiable, 

Non-active  
0.24 – 

Ks   0.1 Not identifiable, 
Non-active  

0.105 – 

Ko   0.1 Not identifiable, 
Non-active  

0.105 – 

Ki    0.1 Not identifiable, 
Non-active  

0.1 –  

Fig. 6. NRSS (normalized residual sum of 
squared errors) optimization surfaces of a 
reduced two-dimensional parameter estimation 
problem for the model implementation 
following TSM (left) and EDM (right). The sur-
faces are constructed by evaluations (repeated 
simulations) for a grid of parameters. The 
optimal solution is around qmax

s(ox) = 1.7g⋅h− 1⋅g− 1 

and qmax
O2

= 8.7 g⋅h− 1⋅g− 1. (Note: that oxygen 
uptake is limiting and therefore maximum 
glucose uptake rate is a non-sensitive param-
eter). The TSM produces stochastic errors 
which produce a noisy surface. This noise is not 
static but dynamically changes throughout the 
evaluation procedure and impedes the optimi-
zation algorithm to converge to the minimum. 
Note that for TSM, the large peaks result mostly 
from “non-physical solutions”, see section 
3.1.2.1.   

Table 5 
Relative error (%σ) of the estimated parameters at different perturbation levels 
of the initial parameter guess. Low errors indicate a good parameter identifi-
cation, whereas high errors indicate a poor identification.   

Perturbation of the initial parameter guess 

0% 10% 30% 50% 

Reference 
%σ   

TSM 
%σ   

EDM 
%σ   

TSM 
%σ   

EDM 
%σ   

TSM 
%σ   

EDM 
%σ   

qmax
s  3.52 8.5 6.72 20.84 3.7 30.22 6.36 

qmax
O2  

2.94 7.26 4.16 15.41 5.71 22.04 4.16 
Yx/s(red) 25.74 16.10 26.43 30.68 18.56 41.33 26.71 
Yx/s(ox) 5.94 12.53 8.55 28.54 12.27 38.99 8.5 
Yx/e(ox) 3.62 6.14 5.14 12.04 5.94 17.34 5.14  
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3.3.1. Prediction uncertainty of the identified models implemented using 
EDM and TSM 

Fig. 5 shows results from fitting the model to the three experiments. 
The solid lines represent the best fit, i.e., the reference solution. The 
shaded areas represent the 95% confidence interval of the EDM (dark) 
and the TSM (pale) implementation. Overall, the solid line obtained by 
EDM describes nicely the discrete measurements of biomass, ethanol 
and glucose as well as the continuous CER and OUR measurements with 
an average normalized root-mean-square error below 5%. Towards the 
end of the fermentations the off-gas signals show slightly higher model 
mismatches which could be due to slower mass transfer by higher cell 
concentrations and/or sensor saturation or decreased sensitivities by 
higher CO2 and lower O2 concentrations in the off-gas stream. 

The prediction uncertainty (see Section 2.2 for details) is a measure 
for the reliability of the model predictions and critically depends on the 
uncertainties in the parameter estimates. These uncertainties result from 
poor parameter sensitivities, parameter correlations and measurement 
errors (EDM and TSM). Using TSM, these uncertainties might be addi-
tionally increased by inaccuracies in the event detection and location of 
model switches. Note that these inaccuracies are also referred to as 
numerical noise (see Section 3.3.2). 

Overall, it seems that the TSM implementation has a lower predictive 
power compared to the EDM implementation. This can be attributed to 

the effects of numerical noise. Thus, it is not surprising to see that for all 
three experiments in Fig. 5 the prediction uncertainties are higher for 
TSM compared to EDM. These results give a first indication that EDM 
produces more robust (reproducible) model predictions for liquid, gas 
and metabolic pathways. 

3.3.2. Numerical noise and its implications for fitting the model to the 
measurements 

Inaccurate and possibly non-physical solutions are highly undesir-
able for numerical analysis. Using TSM the errors in the event location 
are not controlled, the solution of the model can potentially be corrupted 
by noise. This affects the computed states as well as any quantity derived 
from them, such as the residuals (in a parameter estimation problem). In 
this situation, the objective function is a “noisy function”. This is also a 
problem for the computation of sensitivities and gradient information 
during optimization iterations, e.g., in the perturbation gradient esti-
mation methods (using finite difference approximations), gradients are 
computed by evaluating the objective function in several points in the 
neighborhood of the current guess, using finite step sizes. Stochastic 
errors (noise) in the objective function values leads to errors in the 
computed gradients. This can be problematic for the solution of the 
optimization problem. 

The consequences of these errors in the simulation are illustrated in 

Fig. 7. Pairwise parameter estimates obtained by fitting 500 simulated data sets (generated by resampling the data from all experiments). For each fit the initial 
parameter guess was perturbed (perturbation levels 30%) from the best fitting parameter values in Table 4 (reference solution). The scatter plot shows the individual 
parameter estimates together with an approximation of the parameter confidence regions using ellipsoids. The confidence regions obtained by TSM are significantly 
larger when compared with results from EDM. 
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Fig. 6. For TSM and EDM, the objective function surfaces are evaluated 
considering a simplified parameter estimation problem with two un-
known parameters, the maximum oxygen (qmax

O2
) and substrate (qmax

s ) 
uptake rates. EDM produces a continuous and differentiable surface, 
whereas the surface produced by TSM is noisy, discontinuous and non- 
differentiable. This reduces the effectiveness of the gradient-based 
optimization. 

A quantitative analysis is given in Appendix D where the model is 
fitted to 500 simulated data sets (fitting problem in Section 3.3.1 
considering all three experiments and all active parameters given in 
Table 4). Each parameter estimation problem was initialized with a 
perturbed parameter initial guess. The distribution of the NRSS values at 
the solution was used to assess the convergence of the parameter esti-
mation, i.e., low values, close to the reference NRSS, indicate good 
convergence. It turns out that the results obtained by EDM are very 
similar indicating a robust convergence to the optimum. In contrast, the 
results of the TSM are clearly affected by the numerical noise produced 
by the inaccuracies in the location of events. Using TSM, the optimizer 
often gets stuck (does not converge) which results in solutions with very 
high residual values (NRSS). 

The performance of EDM and TSM is described in a more general 
perspective in Appendix E where the results obtained by TSM and EDM 
are compared in terms of the fitting error and computation times for 
different ODE solver types and their error tolerances. Again, the results 
indicate a lower fitting error when EDM is used. However, this comes at 
the price of a relatively small increase in the computation times. 

3.3.3. Numerical noise and its implications for the identifiability of 
parameters 

Table 5 shows the relative errors of the estimated parameter which 
were selected by the parameter identifiability analysis, see section 2.2. 
The first column shows results for the reference solution (column 
“Reference” in Table 5 is taken from Table 4). All columns show results 
obtained by fitting 500 simulated data sets. The fitting was done for 
EDM and TSM for perturbed parameter initial guesses (and at increasing 
perturbation levels). It can be noted that the results for the EDM are not 
significantly affected by the perturbation in the initial parameter guess. 
The reported parameter errors are similar to the errors obtained for the 

best reference solution. These results again proof the robust convergence 
of the optimization algorithm. In contrast, for TSM, with higher 
perturbation levels, the errors in the parameter estimates increase 
significantly. 

These observations are confirmed by the scatterplots in Fig. 7 which 
shows the parameter confidence regions obtained by TSM and EDM for a 
perturbation of the initial parameter guesses by 30%. As to be expected 
the confidence regions obtained by TSM are significantly larger when 
compared with results from EDM. This can be seen for example for the 
pair qmax

s and qmax
O2

, which are also important triggers to switch between 
the different growth pathways (see equations (2.12) and (2.14)). Inter-
estingly enough, the confidence ellipsoids obtained by TSM are not only 
larger, but their location is also different (e.g., Yx/s(red) and Yx/s(ox)). This 
means that besides a larger parameter uncertainty, the usage of TSM also 
leads to different estimates. 

The inflated confidence regions found by TSM mean in practical 
terms, that the TSM is not able to accurately determine the key physi-
ological characteristics of the cell, namely maximum rates and conver-
sion yields. This could extend by collinearity to influence other 
important parameters. Hence, it is not feasible for bioprocessing engi-
neers who rely on TSM modeling to identify a reliable set of model pa-
rameters for such a process. 

3.3.4. Numerical noise and its implications for the uncertainty in model 
predictions 

In this section, different initial concentrations are evaluated to pre-
dict the potential process behavior. 

Fig. 8 shows the isolines (contours) of two different objectives: the 
biomass gain and the reached ethanol concentration. Both quantities are 
related to the initial biomass and glucose concentrations which define 
the two-dimensional design space. 

The combined goal is to avoid excessive ethanol formation (oxidor-
eductive pathway) while at the same time maximizing the cell growth 
(biomass concentration). Considering the isoline based on EDM, the 
optimal operating point is around: 1 [g/L] initial biomass and 19 [g/L] 
initial glucose concentrations. The isolines of the TSM model are shifted 
with an optimum at 0.5 [g/L] initial biomass and 17 [g/L] glucose. 
Compared to EDM, this yields a reduced process performance with 25% 

Fig. 8. Demonstration of the usage of the model for effective model-based DoE to optimize experiment 2. Right) The maximum accumulated ethanol, Left) The gain 
of biomass concentration during the time course of the experiment. Both are plotted against initial biomass and glucose concentrations. Lines: -solid line (EDM), 
-dashed line (TSM). All units are [g/L]. Models implemented with TSM produces shifted and curvy isolines compared to the ones implemented with EDM, when the 
model is evaluated at different initial concentrations. 
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lower biomass. Besides that, another effect can be seen within Fig. 8. 
Compared to the EDM, the TSM model shows a curvy behavior (dashed 
isolines), i.e., repeated evaluation of the model with small differences in 
the initial concentrations produces significant shifts in the isolines 
which makes them harder to interpret. It can be concluded that pre-
dictions based on TSM implementation are unreliable and therefore 
cannot be recommended for simulation-based optimization. 

As in many other biotechnological upstream processes which aim 
mostly for maximum cell yield, this process must run close-to-optimal 
conditions, e.g., oxidative metabolism close to the boundaries of 
oxidative capacity of the cell, which implies running very close to the 
metabolic (boundaries) switches, e.g., bottleneck kinetics, and causes 
the simulation to be highly sensitive to inaccurate event location. 

EDM by explicitly accounting for these switches, ensures the simu-
lation to run without any deviations and therefore keeping the pre-
dictions on track. 

4. Discussion and conclusions 

Although successfully employed in other fields, the explicit consid-
eration of events and switches in bioprocess modeling seems under-
estimated and still not sufficiently exploited. Different sources of 
discontinuities still limit the usage of process models in biotechnological 
processes. This includes operational discontinuities, such as instanta-
neous feed addition or offline sampling as well as metabolic changes 
triggered by inducer addition or internal process dynamics during the 
batch and fed-batch operations. Besides the need to explicitly account 
for these sudden changes, a sound implementation allows for more 
reliable and generically applicable models which can be used for process 
design, monitoring and targeted control of cell metabolism in an in-
dustrial context. 

A robust modeling approach has been developed for the respiro- 
fermentative growth of S. cerevisiae. This has been achieved by the 
consideration of metabolic switches as events in the framework of an 
earlier established model [55]. The comparative analysis of the pro-
posed EDM for model implementation, and the simpler and often used 
TSM underlines that models implemented with EDM deliver more 

accurate location of metabolic switches, lower prediction error and 
lower parameter uncertainty. 

The results of the presented case study encourage further in-
vestigations using EDM modeling with other interesting discontinuous 
behaviors. The S. cerevisiae growth model could be adapted to multi- 
substrate mixtures by considering additional pathways and potential 
interactions such as diauxic growth. Switches in the reaction routes 
(similar to the switches in this contribution) are conceivable for the 
consideration of overflow metabolism for E. coli [65], [72], or for 
Crabtree-positive P. pastoris [73], [74]. External and auto-induced pro-
duction switches in recombinant protein production in S. cerevisiae, 
E. coli or P. pastoris and other organisms imply critical changes in cell 
metabolism. The induction itself might be externally triggered (e.g., 
[73], [74]), and formulated as a process related switch, or, in case of 
auto-induction (e.g., phosphate starvation for E. coli and P. pastoris [75], 
[76]), an implicit switch could be formulated (e.g., depending on 
available substrate), which triggers a change to a new reaction route for 
product formation. 
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Appendices 

Appendix A. Numerical implementation of the event driven method 

Boolean trigger functions 
Events are triggered when the sign of the condition in (eq. 2.3), changes, i.e., a zero crossing in c(⋅) is detected. It is noted that [38] use a more 

general definition of state conditions which represent logical propositions. These logical propositions may contain a number of relational expressions 
and sets of connectives (e.g., NOT, AND, OR). However, in this contribution Boolean trigger functions C (t) are used [27]. For C (t), output values 
true are mapped to positive values and output values false are mapped to negative values such that the corresponding state condition c(⋅) has a root at 
every change of the corresponding Boolean values: 

C (t) :=

{ 1,

0,

if c(x(t), u(t), θ, t ) ≥ 0

if c(x(t), u(t), θ, t ) < 0

}

(A.1) 

Moreover, in this contribution, a decision tree is formulated out of the values of the Boolean functions which links different conditions. This 
approach allows for a more straightforward implementation where the monitoring of conditions and detection of events is decoupled from the 
evaluation of logical operations. Thus, once, one or more events are detected, the new active submodel is selected based on the evaluation of the 
decision tree. 

Discontinuity locking 
In the event driven method, the system of equations for each subinterval is locked throughout the solution. This means that the system of equations 

cannot change even if one or more state conditions are satisfied [38]. The state conditions are monitored continuously, and if any of them are satisfied, 
the exact time of occurrence is then located, equations are switched, new initial states might be calculated, and the integration is restarted. This 
approach is efficient and correct provided that the system of equations employed before the state event is mathematically well behaved in a small 
interval following the state event (even if the solution is not physically meaningful) [77]. 
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Chattering control 
When there are many discontinuity points in a small-time interval, the system is said to have a chattering behavior. In this situation, the use of an 

event location routine can lead to an expensive procedure [36]. Chattering can be observed for solutions which produce a sliding along the critical 
threshold of a certain condition without a clear threshold crossing. Measured noisy signals as time dependent inputs to the model, e.g., a measured 
feed, might also produce chattering. In this contribution, chattering was found for signals with high frequent noise when the monitored conditions are 
close to a critical threshold. 

In order to reduce chattering, in this contribution, a hysteresis band is defined for the threshold in each condition as follows: 

c(x(t), u(t), θ, t ) = − ϵ if C (t) = 1
c(x(t), u(t), θ, t ) = +ϵ if C (t) = 0 (A.2)  

where the magnitude of ϵ defines the magnitude of the hysteresis band. It can be seen that the sign of ϵ depends on the current state of the Boolean 
trigger function C (t). Alternatively, the hysteresis band could also be defined based on the sign of the rate of change of c(⋅). Here, for positive rates, 
dc/dt ≥ 0, a positive +ϵ is used, while for negative rates, dc/dt < 0, a negative − ϵ is used. ϵ is a tuning parameter, its value needs to be chosen 
individually for the specific problem, keeping in mind that using small values avoids any delay effects in the event detection. 

Appendix B. Experimental design and calculation of stoichiometric coefficients calculations 

Yeast fermentation media and process parameteres are shown in Tables B1-B2. 
The calculations of the stoichiometric coefficients for known molecular weights of HX, OX, NX , can be done by solving the linear system in eq. 

(B.1). 

r1 r2 r3

V

x

s

e

co2

o2

NH3

H2O

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

α2 α5 α10

1 1 0

0 α8 − 1

α3 α6 α11

− α1 0 − α9

− α2 − α5 − α10

α4 α8 α12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

V x s e co2 o2 NH3 H2O
⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 6 2 1 0 0 0

0 HX 12 6 0 0 3 2

0 OX 6 1 2 2 0 1

0 NX 0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

C

H

O

N

= 0 (B.1)  

Table B.1 
Yeast fermentation media.   

Batch (1,5 L) Fed-Batch (1 L) 

Glucose monohydrate 33 g 220/200/198 g 
(NH4)2SO4 7,5 g 5 g 
KH2PO4 4,5 g 3 g 
MgSO4 * 7H2O 0,75 g 0,5 g 
Struktol J 650 0,1 mL 0,1 mL 
Trace Elements 750 x 1995 mL 1,33 mL 
Vitamins* 750 x 1995 mL 1,33 mL  

Table B.2 
Process parameters.  

Culture Saccharomyces cerevisiae, CBS 8340, Wild type 

pH setpoint 4,8 
Temperature set 30 ◦C 
Agitator Speed 1000 rpm 
Air flow 2,25 L/min (1,5 vvm) 
Base 2 M NaOH 
Base density (2 M NaOH) 1080 g/L 
Feed density 1078 g/L  
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Appendix C. Decision tree 

See Fig. C1. 

Appendix D. Numerical noise and its implications for the convergence of the optimization algorithm 

Fig. D1 shows the normalized residual sum of squared errors (NRSS) for models implemented by TSM and EDM, and obtained from fitting 500 
simulated data sets at different perturbation levels of the initial parameter guesses of the identifiable parameter subset. These initial guesses were 
perturbed at three levels, 10%, 30% and 50%, as described in Section 2.2. While the NRSS obtained by EDM is very similar for all perturbation levels, 
the results of the TSM clearly increase for increased perturbation levels. 

Appendix E. Fitting errors versus computation times 

Table E1 shows comparative results of fitting errors and computation times using TSM and EDM, and using different ODE solvers and error tol-
erances for their numerical solution. The analysis is based on the results obtained by fitting 50 simulated data sets (due to the very long computation 
times needed at lower error tolerances). The perturbation level of the parameter guesses is set to 50%. The performance is defined by the ratio of the 
means of the prediction error as: ΔJEDM/TSM =

μ(NRSS(θ)EDM)

μ(NRSS(θ)TSM)
, and the ratio in the simulation time as: ΔtEDM/TSM =

μ(tEDM)

μ(tTSM)
. 

The results always show a better chance for EDM to get smaller fitting errors. However, this comes at the cost of increased computation times, here 
usually between 14% and 54%. 

The table also shows that the fitting error difference for non-stiff solvers such as ODE45 and ODE23 is less than for their counterpart stiff solvers. 
This is because of the very small step size adopted by non-stiff solvers when applied to stiff problems. Using TSM, a smaller step size means more 
accurate detection of switches, less numerical noise. This improves the convergence and therefore the fitting error. For ODE23s, the problem was not 
solvable at many initializations with TSM. Here the solver “runs forever” without giving any results. 

Fig. C1. Decision tree with two Boolean trigger functions C 1(t), C 2(t) and three submodels 
for the Saccharomyces cerevisiae fermentation model. Switches are made based on the 
metabolic flux capacity “bottleneck concept”. The decision tree is part of EDM computational 
scheme. EDM monitors the switching conditions, when an event is located, the submodel 
is switched. 

Fig. D1. Normalized residual sum of squares (NRSS) box 
plots obtained from fitting 500 simulated data sets 
(generated by resampling the data from all experiments) 
and starting with initial parameter values at different 
perturbation levels (10%,30% and 50%) from the best 
fitting parameter values in Table 4. The reference solution 
was obtained by EDM using the best fitting parameter 
values as initial parameter guess. Each box plot shows the 
interquartile range (IQR), lower and upper 1.5 *IQR 
whiskers, median and outliers results.   
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[20] A. Tsopanoglou, I. Jiménez del Val, Moving towards an era of hybrid modelling: 
advantages and challenges of coupling mechanistic and data-driven models for 
upstream pharmaceutical bioprocesses, Curr. Opin. Chem. Eng. 32 (2021), 100691, 
https://doi.org/10.1016/J.COCHE.2021.100691. 

[21] N.J. Stanford, T. Lubitz, K. Smallbone, E. Klipp, P. Mendes, W. Liebermeister, 
Systematic construction of kinetic models from genome-scale metabolic networks, 
PLOS One 8 (11) (2013), e79195, https://doi.org/10.1371/journal.pone.0079195. 

[22] M.L. Shuler, J.D. Varner, Cell growth dynamics. Comprehensive Biotechnology, 
Pergamon, 2011, pp. 32–38. 

[23] S. Ulonska, D. Waldschitz, J. Kager, C. Herwig, Model predictive control in 
comparison to elemental balance control in an E. coli fed-batch, Chem. Eng. Sci. 
191 (2018) 459–467, https://doi.org/10.1016/J.CES.2018.06.074. 

[24] M.N. Cruz Bournazou, T. Barz, D.B. Nickel, D.C. Lopez Cárdenas, F. Glauche, 
A. Knepper, P. Neubauer, Online optimal experimental re-design in robotic parallel 
fed-batch cultivation facilities, Biotechnol. Bioeng. 114 (3) (2017) 610–619, 
https://doi.org/10.1002/BIT.26192. 

[25] E.A. del Rio-Chanona, D. Zhang, V.S. Vassiliadis, Model-based real-time 
optimisation of a fed-batch cyanobacterial hydrogen production process using 
economic model predictive control strategy, Chem. Eng. Sci. 142 (2016) 289–298, 
https://doi.org/10.1016/J.CES.2015.11.043. 

[26] P. Noll, M. Henkel, History and evolution of modeling in biotechnology: modeling 
& simulation, application and hardware performance, Comput. Struct. Biotechnol. 
J. 18 (2020) 3309–3323, https://doi.org/10.1016/J.CSBJ.2020.10.018. 
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