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a b s t r a c t

We consider the problem of unsupervised domain adaptation (DA) in regression under the assumption
of linear hypotheses (e.g. Beer–Lambert’s law) – a task recurrently encountered in analytical chemistry.
Following the ideas from the non-linear iterative partial least squares (NIPALS) method, we propose
a novel algorithm that identifies a low-dimensional subspace aiming at the following two objectives:
(i) the projections of the source domain samples are informative w.r.t. the output variable and (ii)
the projected domain-specific input samples have a small covariance difference. In particular, the
latent variable vectors that span this subspace are derived in closed-form by solving a constrained
optimization problem for each subspace dimension adding flexibility for balancing the two objectives.
We demonstrate the superiority of our approach over several state-of-the-art (SoA) methods on
different DA scenarios involving unsupervised adaptation of multivariate calibration models between
different process lines in Melamine production and equality to SoA on two well-known benchmark
datasets from analytical chemistry involving (unsupervised) model adaptation between different
spectrometers. The former dataset is published with this work1

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Unsupervised domain adaptation (DA) aims at learning a
odel on a labeled source sample and an unlabeled target sample

hat follow different distributions with the goal of achieving a
igh performance on the unlabeled sample’s distribution [1–
]. Recently, DA techniques attracted considerable attention in
nalytical chemistry since adaptation of (multivariate) calibration
odels, model maintenance and calibration transfer between
imilar analytical devices are recurring tasks that still lack sat-
sfactory ‘‘off-the-shelf’’ solutions [4–8]. Yet, the success of DA
echniques on the type of data typically derived from chemi-
al measurement systems has been limited indicating that the
ssumptions of the underlying models do not comply with the
roperties of the data. Primarily, most of the DA techniques
eveloped over the past decade involve non-linear hypotheses,
hich is the natural choice for applications in e.g. computer
ision, text mining or natural language processing. However,
he data generating process underlying most setups in analytical
hemistry is governed by Beer–Lambert’s law, which describes
he relationship between absorbance of electromagnetic radiation

∗ Corresponding author.
E-mail address: werner.zellinger@scch.at (W. Zellinger).
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and analyte concentration [9], i.e.

A = − log
(
I0
I

)
= ε · ζ · d. (1)

A in Eq. (1) denotes absorbance, ε is the characteristic (sub-
stance specific) absorptivity of the analyte, ζ the concentration
in solution and d the optical path length. I0 is the raw intensity
or ζ = 0 (i.e. the background signal) and I is the attenuated
ignal (Fig. 1A). Although Beer–Lambert’s law does not strictly
old in practice due to e.g. light scattering, (non-linear) inter-
ctions between different analytes (i.e. matrix effects), sample
nhomogeneity etc., the linear dependence of the measured signal
n concentration still holds surprisingly well for a wide array of
nalytical techniques and sample types justifying the use of lin-
ar hypotheses when modeling concentration given absorbance
i.e. calibration) [10]. Further reasons for the limited success of
urrent DA technique on Beer–Lambert type data and applications
n analytical chemistry are that (i) sample size is often small
i.e. N < 100) and (ii) the number of predictors usually large
n typical calibration settings and thus (iii) estimation of the
nderlying distributions without further assumptions on the data
n general difficult. The typical assumptions are that the data has
ow rank and that it is approximately normal distributed. The
ormer follows from the number of chemically distinct molecular
pecies (i.e. the chemical rank) within a samples, which is usually

mall in relation to the number of predictors. Normal distribution,

https://doi.org/10.1016/j.knosys.2020.106447
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on the other hand, is a reasonable assumption when the data lies
on a low-dimensional, latent space since the corresponding linear
combinations of the predictors converge to normal distributed
random variables as the number of predictors grows [11].

To account for all the aforementioned peculiarities, in what
ollows we propose a new algorithm for multivariate regression
hat combines recent ideas from unsupervised domain adapta-
ion with an old technique that strongly influenced the field
f chemometrics: The non-linear iterative partial least squares
NIPALS) algorithm [12]. Along these lines, our algorithm aims
t mapping the input data on a low-dimensional subspace ex-
laining a high amount of variation in the output variable and
t the same time a small difference between first and second
rder statistics of the domain-specific input samples (Fig. 1). The
irections of this subspace are computed consecutively as closed-
orm solution of a convex optimization problem. Each iteration
f our algorithm is followed by matrix deflation yielding or-
hogonal, domain-invariant latent variables with high predictive
ower w.r.t. the output variable in the source domain. We thus
oin our method Domain-Invariant Iterative Partial Least Squares
DIPALS).2

Our main contributions are as follows:

• We propose a new deterministic learning algorithm for un-
supervised domain adaptation of multivariate linear regres-
sion models.

• We provide a rigorous mathematical analysis of our ap-
proach including (a) a new upper bound on the target error
which is minimized by our algorithm, (b) a proof of the
uniqueness and a characterization of the projection vector
computed in each iteration, and, (c) a heuristic for inter-
pretable parameter setting.

• We provide a new dataset of real-world data for unsuper-
vised domain adaptation of regression.3

• Our algorithm compares favourably to state-of-the-art
methods on three benchmark datasets for analytical chem-
istry.

The rest of the paper is organized as follows: Section 2 gives
brief overview of previous work related to DA. Section 3 states
he problem of unsupervised DA in regression. In Section 4 we
evelop the theoretical basis of our algorithm which is pro-
osed in Section 5. Section 6 compares our algorithm with differ-
nt DA techniques on three benchmark datasets from analytical
hemistry and Section 7 concludes the paper.

. Related work

Several strategies have been proposed in the past to over-
ome the problems arising when training and test data are sam-
led from different distributions: Instance weighting approaches
eweigh the training instances to increase the similarity between
raining and test distributions [14–16]. Blitzer et al. suggested
heuristic) selection of so-called domain-invariant pivot variables
n order to narrow the domain gap [17]. A different strategy to
educe the difference between domains involve minimization of
ome measure of domain discrepancy in latent spaces: In [18] the
aximumMean Discrepancy [19] between the empirical domain-
pecific distributions is minimized subject to an orthogonality
onstraint on the latent variables. Scatter Component Analysis
mploys the Maximum Mean Discrepancy to minimize domain
catter while concomitantly maximizing total and between-class
catter [20]. Conceptually, these methods perform dimensional-
ty reduction in a feature space (induced by the corresponding

2 This document replaces preliminary work previously published in [13].
3 https://github.com/RNL1/Melamine-Dataset
2

kernel) and thus introduce non-linearity, which might not be
appropriate if the true relationship between input and output
variables is approximately linear. Combination of pivot variable
selection and distribution alignment has been proposed in [21,
22]. DA techniques that align distributions in linear subspaces
have been proposed in [23–25]. However, these methods involve
a numerical solution of non-convex optimization problems and
eventually converge to sub-optimal solutions. The same is true for
recent approaches aiming at (unsupervised) correction of changes
in the conditional distribution [26,27]. Non-linear hypotheses
and/or subspaces in combination with non-convex objectives are
treated e.g. in [28–31].

3. Problem formulation

We follow the basic formal model of domain adaptation de-
fined in [2], where a domain is defined as a pair ⟨P, l⟩ consisting
of a distribution P (in our case on RK ) and a target function (in
our case l : RK

→ [0, 1]). We consider a source domain ⟨P, l⟩ and
target domain ⟨Q , l⟩ sharing the same labeling function, i.e. we

ollow the covariate-shift assumption [32].
Given a source sample XS ∈ RNS×K (with rows xT corre-

ponding to the input signals of individual samples) drawn from
with corresponding continuous labels y = l(XS) ∈ [0, 1]NS

and an unlabeled target sample XT ∈ RNT×K drawn from Q , the
goal of unsupervised domain adaptation is to find a function
h : RK

→ [0, 1] with a small target error

EQ [|h − l|] =

∫
RK

|h − l| dQ . (2)

4. Motivation

This section motivates our algorithm by means of a new learn-
ing bound under three typical characteristics of data derived from
chemical measurement systems: Linear dependency between in-
put and output (governed by Beer–Lambert’s law), multicollinear-
ity of input signals, and, approximately normally distributed data.

In the following, let us consider two domains ⟨P, l⟩ and ⟨Q , l⟩
and a function h = f ◦g where g : RK

→ RL
∈ G and f : RL

→ R ∈

F are two functions from appropriate classes G and F . Denote
by P̃ := P ◦ g−1 and Q̃ := Q ◦ g−1 the latent distributions w. r. t. g
(pushforward measures) and by D(NP̃ ∥ NQ̃ ) the Kullback–Leibler
divergence (KL-divergence) between the two Normal distribu-
tions NP̃ and NQ̃ with mean and covariance corresponding to P̃
and Q̃ , respectively. Based on these definitions, we may state the
following lemma.

Lemma 1. Consider two domains ⟨P, l⟩, ⟨Q , l⟩ and the function
h = f ◦g which induces the latent distributions P̃, Q̃ and the Normal
distributions NP̃ ,NQ̃ as defined above. Then the following holds:

EQ [|h − l|] ≤ EP [|h − l|] +

√
2D(NP̃ ∥ NQ̃ ) + λ(g) +

√
8ϵ (3)

where

ϵ := max
{
D(NP̃ ∥ P̃),D(NQ̃ ∥ Q̃ )

}
(4)

and

λ(g) := inf
f∈F

(EP [|f ◦ g − l|] + EQ [|f ◦ g − l|]). (5)

Proof. Applying Thm.1 in [2] to the two domains ⟨P̃, lP ⟩ and
⟨Q̃ , lQ ⟩ with (stochastic) labeling functions lP , lQ : RN

→ [0, 1],
which are induced by the latent mapping g and defined by
lP (t) := EP [l(x) | g(x) = t] according to [33], yields

E [
⏐⏐f − l

⏐⏐] ≤ E [|f − l |] + 2d (P̃, Q̃ )
Q̃ Q P̃ P TV

https://github.com/RNL1/Melamine-Dataset
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Fig. 1. Graphical abstract. (A) Beer–Lambert’s law. (B) and (C) show projections of source and target domain data on the first two latent variables of a partial least
squares (PLS) and a DIPALS model, respectively. (D) t-SNE embedding of C from higher-dimensional latent variable space.
+ inf
f :RL→R

(EP̃ [|f − lP |] + EQ̃ [
⏐⏐f − lQ

⏐⏐])
here dTV refers to the Total-Variation distance. From the

‘‘change of variables’’ Thm. 4.1.11 in [34] we obtain

EP̃ [|f − lP |] =

∫
|f − lP | d(P ◦ g−1) =

∫
|f − lP | ◦ g dP

= EP [|f ◦ g − lP |]

hich, together with the application of the Triangle inequality for
TV, implies that

Q [|h − l|] ≤ EP [|h − l|] + λ(g) + 2dTV(NP̃ ,NQ̃ )

+ 2dTV(P̃,NP̃ ) + 2dTV(Q̃ ,NQ̃ ).

q. (3) then follows from Pinsker’s inequality and the definition
f ϵ. □

Lemma 1 shows that the error in the target domain can be
ounded in terms of the error in the source domain, the KL-
ivergence between Normal approximations of the latent distri-
utions, a corresponding approximation error ϵ and the domain
daptation error λ(g). For sample-based upper bounds on the
arget error in terms of moments, we refer to [35], and, for
ample-based upper bounds on the distance D(NP ∥ NQ ) we refer
o [36].

Lemma 1 suggests a small target error if the terms on the
ight-hand side of Eq. (3) are small. In the following, we motivate
ifferent algorithmic properties under which (in combination
ith the three observations stated in Section 1) each of these
erms can be expected to be small.

Domain Adaptation Error λ(g): Beer Lambert’s law states a
inear relationship between output variables and inputs. There-
ore, we assume a target function l : RK

→ [0, 1] that is well
pproximable by a linear function, i.e. l(x) ≈ xTd for some d ∈ RK .

For such a target function l and each linear function g : RK
→ RL

with g(x) = (xTA)T and orthogonal matrix A ∈ RK×L, it always
exits a linear function f ∈ F , e.g. f (x) := xTATd, such that l ≈ f ◦g
and λ(g) ≈ 0. We therefore aim at finding a function h = f ◦ g
with orthogonal projection g : RK

→ RL and linear function
f : RL

→ R.
Source Error EP [|h − l|]: To overcome numerical instabilities

caused by the observed high multicollinearity of the input data,
the NIPALS algorithm has been proposed to find a linear latent
variable model f ◦ g as defined above with a small source error.
This algorithm serves as a starting point for our algorithm.

Approximation Error ϵ: One implication of the assumption
of approximately normally distributed input distributions P and
Q is that the application of the linear transformation g leads
to latent distributions P̃ and Q̃ that are well approximable by
Normal distributions. It is therefore reasonable to assume a small
ϵ in Lemma 1. It is interesting to observe, that the term ϵ can be
interpreted as an upper bound on the information stored in the
distributions P and Q in addition to the first two moments [37].

Distribution Divergence D(NP̃ ∥ NQ̃ ): It is well known that
he convergence D(NPn ∥ NP∞

) → 0 for n → ∞ of some zero
ean centered distributions P , n ∈ N and P is implied by the
n ∞

3

convergence of the respective covariances Σn → Σ∞. This moti-
vates us to learn a transformation g such that the transformations
P̃ and Q̃ of the distributions P and Q show zero means and similar
covariance matrices. It is interesting to note that, in the case of
Normal distributions, the convergence in mean and covariance is
equivalent to the convergence in most other probability metrics,
see e.g. [35,38].

5. DIPALS algorithm

As described in Section 3, given two matrices XS ∈ RNS×K ,XT
∈ RNT×K with rows xT representing input signals x and a vector
y ∈ RNS of corresponding outputs, we aim at computing a linear
function f ◦ g : RK

→ R with a small error on the distribution of
the target sample XT .

As motivated in Section 4, we aim at computing linear func-
tions f : RL

→ R with f (t) = tTc for c ∈ RL and g : RK
→ RL with

g(x) = (xTA)T for orthogonal A ∈ RK×L such that the source error
is minimized and the sample covariance matrices of the latent
samples XSA and XTA are similar. To handle collinearity in the
inputs, we rely on a regularized version of the NIPALS algorithm.

5.1. Step-by-step description

The standard implementation of the NIPALS algorithm [12]
contains four basic steps: Initialization, Projection, Regression and
Deflation. In the following, these steps are adapted for unsuper-
vised domain adaptation.

Step 0 (Initialization): The first step of our algorithm consists
of zero mean centering of the inputs and outputs such that
E[XS] = E[XT ] = E[y] = 0 where E[X] refers to the column-
wise empirical mean of the matrix X. Then, we follow the basic
ideas of the NIPALS algorithm by iterating over the following
steps to compute one direction of the latent mapping (and a
corresponding regression coefficient):

Step 1 (Domain-Invariant Projection): The following objec-
tive function is considered:

min
wTw=1

∥XS − ywT
∥
2
F + γwTΛw (6)

where ∥.∥F refers to the Frobenius norm, γ is the domain-
regularization parameter and

Λ := Kdiag(|λ1|, . . . , |λK |)KT (7)

is the matrix obtained by taking the absolute value of all eigen-
values λ1, . . . , λK in the eigendecomposition

Kdiag(λ1, . . . , λK )KT
=

1
NS − 1

XT
SXS −

1
NT − 1

XT
TXT

(8)

with corresponding eigenvector matrix K of the difference of the
domain-specific covariance matrices. The first term in Eq. (6)
corresponds to the ordinary NIPALS objective and its minimum is
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Algorithm 1 DIPALS

Input: Source sample XS ∈ RNS×K , labels y ∈ RNS , target
sample XT ∈ RNT×K , number of latent variables L ∈ N,
domain-regularization parameter γ ∈ R
Output: Regression vector b ∈ RK of the function h(x) = xTb

Step 0 (Initialization): P := [ ], W := [ ], c := [ ], y := y−E[y],
XS := XS − E[XS], XT := XT − E[XT ]

for i = 1 to L do
Step 1 (Domain-Invariant Projection):
Compute eigenvalues λ1, . . . , λK and eigenvector matrix K of

1
NS−1X

T
SXS −

1
NT−1X

T
TXT

Λ := Kdiag(|λ1|, . . . , |λK |)KT

wT
:=

yTXS
yTy

(
I +

γ

yTyΛ
)−1

w := w/∥w∥

Step 2 (Regression):
tS := XSw, tT := XTw
c̃ := (tSTtS)−1tSTy
Step 3 (Deflation):
pT

S := (tSTtS)−1tSTXS, pT
T := (tTTtT)−1tTTXT

XS := XS − tSpS
T, XT := XT − tTpT

T

y := y − c̃tS
P := [P, pS], W := [W,w], c := [c, c̃]

end for
b = W(PTW)−1c

obtained by the direction w where XS has maximum sample co-
ariance with y. The second term in Eq. (6) is our contribution and

represents an upper bound on the absolute difference between
the source sample variance and the target sample variance in the
direction w (see Section 5.3). The (unique) solution of Eq. (6) is
achieved by the vector

wT
=

yTXS

yTy

(
I +

γ

yTy
Λ

)−1

(9)

divided by its length wTw (see Section 5.3). The coordinates tS
and tT of the (domain-invariant) projections corresponding to the
direction w can be computed by

tS = XSw and tT = XTw. (10)

Step 2 (Regression): Ordinary least squares regression of y on
tS yields

c = (tTStS)
−1tTSy. (11)

Step 3 (Deflation): Following the Gram–Schmidt process, our
algorithm removes the variation in XS explained by the current
latent variable by subtracting the projection of XS along tS , i.e. the
following update is performed

XS := XS − tS(tTStS)
−1tTSXS . (12)

The matrix XT is updated analogously by means of tT .
After each iteration, the coordinates of the vectors are properly

aggregated to obtain the final regression vector b such that h(x) =
Tb, see Algorithm 1 and [39] for detailed derivations of these
tandard PLS steps. In particular, the projection matrix A such that
g(x) = (xTA)T can be computed by the relationship [40]:

A = W(PTW)−1, (13)

here the projection matrix P and the weight matrix W are
omputed as described in Algorithm 1.
4

5.2. Regularization parameter heuristic

Consider the matrix Λ from Eq. (7) and the vector w0 cor-
responding to the unconstrained (γ = 0) NIPALS solution. We
propose to iteration-wise fix the value of gamma as

γ :=
∥XS − ywT

0∥
2
F

wT
0Λw0

. (14)

his setting leads to equal weighting of the terms in the objective
q. (6) in the direction w0.

.3. Discussion

ulticollinearity. The optimum of the first term in the objec-
ive function Eq. (6) is achieved by the direction w0 where the
ample covariance 1

NS−1w
T
0X

T
Sy between XS and the output vector

is maximal. As a result, the NIPALS algorithm well handles
ulticollinearity of the input sample (compare also [39]).

niqueness of solution. The value of our regularizer wTΛw (for
wTw = 1) is nothing but the value of the Rayleigh quotient of
he positive semi-definite matrix Λ. It is therefore convex and
ts summation preserves the convexity of the original NIPALS
bjective, i.e. the first term in Eq. (6). As a result, the unique
olution of the objective function can be obtained as the root of
ts derivative and has the form of Eq. (9).

nterpretation of proposed regularizer. Our regularizer is an upper
ound on the absolute difference⏐⏐⏐⏐ 1
NS − 1

wTXT
SXSw −

1
NT − 1

wTXT
TXTw

⏐⏐⏐⏐ (15)

between the domain-specific sample variances in the direction w.
To see this, consider the eigenvector matrix K and the eigenvalues
λ1, . . . , λK as in Eq. (8). Then, by letting v := (v1, . . . , vK ) := KTw,
Eq. (15) is equal to

|wTKdiag(λ1, . . . , λK )KTw|

= |v2
1λ1 + · · · + v2

KλK |

≤ |v2
1λ1| + · · · + |v2

KλK |

= v2
1 |λ1| + · · · + v2

K |λK |

= vTdiag(|λ1|, . . . , |λK |)v
= wTΛw.

his shows, that the proposed regularizer corresponds to an up-
er bound on the difference between the source sample variance
nd the target sample variance in the direction w. It can therefore
e interpreted as biasing the NIPALS objective towards direc-
ions with a low variance difference between the domains in the
rojection space.

nterpretation of proposed heuristic. The derivations above allow
o interpret the regularization strength γ as trade-off between
ttaining high input–output covariance in the source domain and
ow variance difference between the domains. This leads to intu-
tive heuristics for default values of γ as proposed in Section 5.2.
ith the value of γ as in Eq. (14) we articulate our preference of

reating regression and domain alignment as equal important in
range around the optimal NIPALS solution.

omputational complexity. The computational complexity of our
IPALS algorithm is O(LK 3) where L is the number of latent
ariables and K is the input dimension. The most time con-
uming step is the eigendecomposition in Eq. (7) which can be
mplemented in O(K 3) time-steps, see e.g. [41].
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6. Experiments

In this section we compare our method (DIPALS) with several
tate-of-the-art DA techniques on three benchmark data sets
rom analytical chemistry. We consider: Correlation alignment
CORAL) for the fact that — similar to our method — it can handle
omain shifts in terms of covariance differences [42]; Transfer
omponent analysis (TCA) for the capability of addressing both,
ovariate shift and multicollinearity [18]; Joint distribution opti-
al transportation (JDOT), which in contrast to most other DA

echniques proposed so far can handle shifts not only in the
arginal but also in the conditional distributions [27]; Domain-

nvariant PLS (di-PLS), which similar to the here proposed method
ims at modeling the response in terms of domain-invariant LVs
ut solves a non-convex optimization problem to do so [24] and
rdinary partial least squares (PLS) regression on the source and
pplied in the target domain, which is used as baseline in all
xperiments.

.1. Hyperparameter selection

The parameter γ of our method (DIPALS) was set for each
atent variable using the parameter heuristic described in Sub
ection 5.2. Alternatively, we employ 10-fold cross-validation on
he source data for γ in the range {0.1, 1, . . . , 1010

} and set γi
o the value exhibiting the lowest cross-validation error on the
ource task for i = {1, . . . , L} latent variables. Note that in both
ases, no labels from the target domain were used for finding
he optimal parameter(s). The number of latent variables was
hosen based on 10-fold cross-validation on the source task em-
loying the one-standard-error rule as described elsewhere [43].
ORAL was applied to the (training set) projections of the baseline
PLS) model followed by ordinary least squares regression. For
he other methods we report the best parameter (combination)
ielding the lowest mean squared error on the test set (i.e. su-
ervised tuning): For (linear) TCA we explore {1, . . . , 30} latent
ariables and µ ∈ {10−10, 10−9, . . . , 1}. For JDOT we either
et α = 1/maxi,j d(xSi , x

T
j ) or vary α ∈ {10−10, 10−9, . . . , 1}

whichever yielded better results in the target domain) as de-
cribed previously [27]. In addition, we vary the (linear) kernel
idge regression parameter λ in the range {10−10, 10−9, . . . , 1}.
he regularization parameter λ for di-PLS was tuned in the range
0−9, 10−8, . . . , 109 as described in [24].

.2. Datasets

elamine. The Melamine dataset originates from a batch con-
ensation process and consists of near infrared (NIR) absorbance
pectra of 4 different Melamine resins recorded at different de-
rees of polymerization. The analytical goal is to predict the
urbidity point (expressed in ◦C), which is related to the degree of
olymerization, from the corresponding NIR spectra.4 We herein
eport the results of inductive DA between different Melamine
esins using the entire set of input features, i.e. both wavenumber
anges from 5546–6254 cm−1 and 6596–6975 cm−1. To this end,
e randomly split the target domain data for each scenario into
n unlabeled training set (60%), which is used along with the
ource domain data for training, and a test set (40%) used to
stimate the generalization error in the target domain. The test
et was re-centered to the training set and all experiments were
epeated 10 times.

4 https://github.com/RNL1/Melamine-Dataset
5

Corn. The Corn dataset is a well established dataset used to
benchmark instrument standardization algorithms in analytical
chemistry and comprises NIR spectra from a set of 80 corn sam-
ples measured on 3 similar spectrometers (m5,mp5 and mp6).5
The analytical goal is to predict oil, water, starch and protein con-
tents from the corresponding spectra. In the present contribution
we consider inductive DA between the different instruments by
defining the source domain as the first 40 samples and the target
domain as the following 40 samples of the dataset. Given the 4
output variables, this translates into 24 DA scenarios. We proceed
similar to the experiments on the Melamine dataset and split the
target domain data randomly into an (unlabeled) training and a
test set comprising 24 and 16 samples, respectively.

Tablets. The Tablets dataset was originally published by the in-
ternational diffuse reflectance conference (IDRC) in 2002 and
consists of NIR spectra of 654 pharmaceutical tablets recorded
on 2 spectrometers at 650 individual wavelengths.6 The ana-
lytical goal is to predict the active pharmaceutical ingredient
(API) concentration from the NIR spectra. The dataset is divided
into a calibration, a validation and a test set comprising 155,
40 and 460 samples measured on both instruments. We con-
sider inductive DA between calibration and test sets from the
two instruments including the wavelength range 600–1600 nm
and proceed in analogy with the experiments on the Corn and
Melamine datasets.

6.3. Results

Melamine dataset. Table 1 shows the prediction errors on the
12 DA scenarios of the Melamine dataset. Application of CORAL
on the source and target projections of the baseline model did
not yield any improvements on the target task. In contrast, TCA
and JDOT significantly reduced the target error, with the former
achieving significantly lower errors on most scenarios. However,
TCA and JDOT yielded reasonable performance in the target do-
main only when the corresponding hyperparameters were set in a
supervised way (i.e. making use of label information in the target
domain). In contrast, our method (DIPALS) clearly outperformed
TCA, JDOT and di-PLS in most scenarios using the hyperparame-
ter heuristic in Eq. (14). Indeed the parameter heuristic yielded
overall good performance on the target tasks, whereas for some
scenarios (e.g. 862 → 562) setting γ such the CV error on the
source task was minimized yielded superior accuracy. We found
that the improvement over the baseline model is not only due
to reduction of domain discrepancy in the latent variable space
but can also be attributed to the fact that domain regularization
reduced the error on the source task in all scenarios (Fig. 2). Given
the increase in the variance of the regression vector (i.e. ∥b∥

2
2)

with increasing γ this observations indicates that alignment of
source and target data in fact reduces the bias of the (source)
model.

Corn dataset. In contrast to the Melamine dataset, where more
complicated distribution shifts occur between domains due to
qualitative changes in sample composition, the changes observed
in the Corn dataset occur due to changes in the instruments’
response and are mostly manifested in offsets between the corre-
sponding spectra. All in all, we found similar performance of TCA
and DIPALS with slightly better results with the former for predic-
tion of oil content and with the latter when predicting moisture
(Table 2). Although JDOT and di-PLS could improve the accuracy
on the target task for determination of protein and starch (com-
pared to the baseline), accuracy was significantly lower in most
scenarios compared to DIPALS. Finally, no improvement of the
baseline model could be achieved with CORAL.

5 http://www.eigenvector.com/data/Corn/ (accessed April 11, 2018).
6 http://www.eigenvector.com/data/tablets/ (accessed January 14, 2019).

https://github.com/RNL1/Melamine-Dataset
http://www.eigenvector.com/data/Corn/
http://www.eigenvector.com/data/tablets/
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p

Fig. 2. The distance measure changed here: DIPALS hyperparameter heuristic. Left: Magnitude of the regularization term against increasing values of the regularization
arameter γ shown for different datasets. The red dots indicate the heuristic choice of γ according to Eq. (14). Right: The average mean squared error on the source

task and variance of the regression vector b at increasing γ computed from all DA scenarios of the Melamine dataset. The red vertical line indicates the average γ

obtained using Eq. (14). Note that all trajectories have been normalized to lie in [0, 1] for better comparability. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Table 1
Accuracy on the Melamine dataset. The average root mean squared errors across 10 experiments with standard de-
viations are shown. The best value for each scenario is indicated in bold. (Sup) indicates supervised hyperparameter
selection using target domain labels, (Heur) indicates that the regularization parameter γ was set according to Eq.
(14) and (S) indicates that γ was set such that the CV Error on the source task was minimized.
Scenario NIPALS CORAL TCA (Sup) JDOT (Sup) di-PLSa DIPALS (Heur) DIPALS (S)

562 → 568 4.83 ± 0.21 4.99 ± 0.24 2.04 ± 0.14 3.23 ± 0.30 2.47 1.75 ± 0.14 1.69 ± 0.23
562 → 861 5.65 ± 0.26 5.55 ± 0.18 2.46 ± 0.14 3.10 ± 0.15 3.28 2.13 ± 0.11 2.20 ± 0.13
562 → 862 3.22 ± 0.29 3.27 ± 0.21 2.59 ± 0.31 2.76 ± 0.20 2.23 2.09 ± 0.31 2.04 ± 0.34
568 → 562 3.96 ± 0.10 3.94 ± 0.05 2.27 ± 0.11 2.95 ± 0.15 2.58 2.02 ± 0.14 1.99 ± 0.12
568 → 861 5.13 ± 0.29 5.21 ± 0.26 2.44 ± 0.13 2.66 ± 0.09 2.92 2.13 ± 0.10 2.22 ± 0.22
568 → 862 3.39 ± 0.37 3.32 ± 0.19 2.71 ± 0.30 3.12 ± 0.23 2.38 2.26 ± 0.50 2.19 ± 0.31
861 → 562 4.22 ± 0.07 4.27 ± 0.14 2.35 ± 0.12 3.48 ± 0.15 3.29 2.15 ± 0.16 2.03 ± 0.18
861 → 568 4.64 ± 0.12 4.72 ± 0.18 2.16 ± 0.10 2.61 ± 0.31 3.01 1.85 ± 0.09 2.01 ± 0.37
861 → 862 3.69 ± 0.22 3.79 ± 0.20 2.76 ± 0.16 3.69 ± 0.19 2.81 1.94 ± 0.18 2.16 ± 0.53

862 → 562 4.74 ± 0.08 4.76 ± 0.11 3.25 ± 0.09 2.84 ± 0.10 3.52 3.07 ± 0.25 2.53 ± 0.13
862 → 568 5.28 ± 0.22 5.35 ± 0.20 2.85 ± 0.17 2.96 ± 0.38 4.11 3.10 ± 0.46 3.14 ± 0.38
862 → 861 6.17 ± 0.14 6.14 ± 0.16 3.90 ± 0.13 3.06 ± 0.08 4.90 3.64 ± 0.37 3.56 ± 0.21

aValues taken from [24].
Table 2
Accuracy on the Corn dataset. The average root mean squared errors across 10 experiments with standard deviations are shown. The
best value for each scenario is indicated in bold. (Sup) indicates supervised hyperparameter selection using target domain labels,
(Heur) indicates that the regularization parameter γ was set according to Eq. (14) and (S) indicates that γ was set such that the
CV Error on the source task was minimized.
Response Scenario NIPALS CORAL TCA (Sup) JDOT (Sup) di-PLS DIPALS (Heur) DIPALS (S)

Protein

m5→mp5 0.68 ± 0.13 0.65 ± 0.14 0.40 ± 0.03 0.61 ± 0.06 0.44 ± 0.07 0.38 ± 0.08 0.39 ± 0.09
m5→mp6 0.70 ± 0.12 0.77 ± 0.11 0.41 ± 0.05 0.57 ± 0.04 0.47 ± 0.13 0.41 ± 0.03 0.42 ± 0.10
mp5→m5 0.70 ± 0.11 0.71 ± 0.09 0.43 ± 0.09 0.57 ± 0.05 0.44 ± 0.04 0.44 ± 0.07 0.44 ± 0.08
mp5→mp6 0.65 ± 0.12 0.66 ± 0.12 0.36 ± 0.04 0.59 ± 0.07 0.50 ± 0.06 0.50 ± 0.08 0.49 ± 0.04
mp6→m5 0.69 ± 0.10 0.69 ± 0.08 0.43 ± 0.09 0.58 ± 0.07 0.46 ± 0.09 0.43 ± 0.07 0.43 ± 0.12
mp6→mp5 0.66 ± 0.11 0.61 ± 0.15 0.41 ± 0.05 0.44 ± 0.05 0.43 ± 0.07 0.40 ± 0.06 0.36 ± 0.03

Starch

m5→mp5 1.19 ± 0.17 1.11 ± 0.19 0.70 ± 0.08 0.76 ± 0.08 0.68 ± 0.17 0.69 ± 0.18 0.66 ± 0.10
m5→mp6 1.08 ± 0.17 1.11 ± 0.21 0.67 ± 0.10 0.75 ± 0.08 0.65 ± 0.14 0.64 ± 0.15 0.68 ± 0.12
mp5→m5 1.38 ± 0.26 1.30 ± 0.17 0.68 ± 0.11 0.83 ± 0.06 0.82 ± 0.14 0.71 ± 0.08 0.67 ± 0.15
mp5→mp6 1.20 ± 0.16 1.27 ± 0.13 0.68 ± 0.09 0.82 ± 0.08 0.74 ± 0.13 0.80 ± 0.14 0.72 ± 0.15
mp6→m5 1.38 ± 0.17 1.48 ± 0.23 0.64 ± 0.10 0.82 ± 0.07 0.80 ± 0.14 0.76 ± 0.14 0.69 ± 0.15
mp6→mp5 1.21 ± 0.14 1.30 ± 0.11 0.55 ± 0.08 0.81 ± 0.06 0.71 ± 0.09 0.72 ± 0.18 0.89 ± 0.19

Oil

m5→mp5 0.27 ± 0.03 0.27 ± 0.05 0.15 ± 0.02 0.20 ± 0.03 0.20 ± 0.02 0.19 ± 0.03 0.19 ± 0.01
m5→mp6 0.24 ± 0.05 0.30 ± 0.03 0.14 ± 0.01 0.22 ± 0.03 0.19 ± 0.03 0.17 ± 0.02 0.18 ± 0.04
mp5→m5 0.21 ± 0.02 0.24 ± 0.03 0.16 ± 0.02 0.22 ± 0.02 0.25 ± 0.03 0.26 ± 0.04 0.21 ± 0.02
mp5→mp6 0.21 ± 0.03 0.21 ± 0.03 0.15 ± 0.02 0.20 ± 0.03 0.21 ± 0.03 0.20 ± 0.02 0.21 ± 0.03
mp6→m5 0.22 ± 0.02 0.23 ± 0.03 0.17 ± 0.01 0.22 ± 0.03 0.22 ± 0.05 0.23 ± 0.05 0.19 ± 0.02
mp6→mp5 0.20 ± 0.03 0.22 ± 0.03 0.16 ± 0.02 0.21 ± 0.02 0.21 ± 0.04 0.21 ± 0.04 0.18 ± 0.01

Moisture

m5→mp5 0.24 ± 0.03 0.28 ± 0.04 0.24 ± 0.02 0.30 ± 0.04 0.22 ± 0.05 0.22 ± 0.04 0.22 ± 0.08
m5→mp6 0.27 ± 0.03 0.27 ± 0.04 0.27 ± 0.02 0.31 ± 0.04 0.23 ± 0.05 0.25 ± 0.03 0.20 ± 0.02
mp5→m5 0.26 ± 0.03 0.27 ± 0.03 0.29 ± 0.03 0.27 ± 0.05 0.24 ± 0.05 0.23 ± 0.06 0.25 ± 0.06
mp5→mp6 0.27 ± 0.02 0.26 ± 0.04 0.28 ± 0.02 0.31 ± 0.03 0.18 ± 0.06 0.23 ± 0.04 0.20 ± 0.03
mp6→m5 0.28 ± 0.03 0.28 ± 0.03 0.31 ± 0.03 0.24 ± 0.01 0.24 ± 0.06 0.22 ± 0.03 0.22 ± 0.05
mp6→mp5 0.27 ± 0.03 0.26 ± 0.02 0.26 ± 0.03 0.31 ± 0.04 0.19 ± 0.04 0.17 ± 0.02 0.20 ± 0.03
6



R. Nikzad-Langerodi, W. Zellinger, S. Saminger-Platz et al. Knowledge-Based Systems 210 (2020) 106447

i
f
t
a
f
(
l

C
a
f
T
a
n
D
s
1
t
i
t
p
E
t
s
f
e
s
D
o
s
w

7

g

Fig. 3. Target domain error vs. CPU time.
Table 3
Accuracy on the Tablets dataset. The average root mean squared errors across 10 experiments with standard devi-
ations are shown. The best value for each scenario is indicated in bold. (Sup) indicates supervised hyperparameter
selection using target domain labels, (Heur) indicates that the regularization parameter γ was set according to Eq.
(14) and (S) indicates that γ was set such that the CV Error on the source task was minimized.
Scenario NIPALS CORAL TCA (Sup) JDOT (Sup) di-PLS DIPALS (Heur) DIPALS (S)

cal1→test2 9.48 ± 0.64 9.56 ± 0.58 8.50 ± 0.59 12.86 ± 1.07 8.69 ± 1.06 7.69 ± 0.47 8.04 ± 0.53
test2→cal1 8.18 ± 0.94 7.89 ± 1.01 7.23 ± 1.04 10.26 ± 0.67 7.77 ± 1.14 6.54 ± 1.25 7.58 ± 1.59
cal2→test1 8.35 ± 0.58 7.51 ± 0.73 6.63 ± 0.92 13.46 ± 0.50 7.98 ± 0.83 7.12 ± 0.68 6.75 ± 0.48
test1→cal2 8.12 ± 1.55 8.39 ± 1.33 7.26 ± 1.83 10.24 ± 0.55 8.20 ± 1.26 7.66 ± 1.66 8.43 ± 1.25
Table 4
Average execution times of the different domain adaptation methods in seconds.

PLS CORAL TCA JDOT di-PLS DIPALS

Melamine 0.30 0.32 1.11 41.5 0.36 0.45
Corn 0.19 0.20 1.53 0.02 0.20 0.61
Tablets 0.16 0.18 0.90 0.55 0.16 0.35
Tablets dataset. The Tablets dataset, similar to the Corn datasets,
nvolves DA between similar NIR spectrometers. Accordingly, we
ound similar overall performance of DIPALS and TCA on the
arget tasks (Table 3). In contrast, JDOT could not surpass the
ccuracy of the baseline model, which can be explained with the
act that the Tablets dataset contains several y-direction outliers
i.e. spectra with wrongly assigned API values) that apparently
ead to erroneous transport of the joint distribution.

PU time. Table 4 shows the average execution times for training
nd testing of PLS, CORAL, TCA, JDOT, di-PLS and DIPALS models
or fixed parameter sets on all domain adaptation scenarios from
ables 1–3 including the time required for pre-processing training
nd test data (where necessary). For better comparability, the
umber of LVs was fixed to 5 for PLS, CORAL, TCA, di-PLS and
IPALS. In particular, CORAL and di-PLS have execution times
imilar to the baseline PLS model. In contrast, DIPALS shows
.5 − 3 times higher execution times which can be attributed to
he computational complexity of the convex relaxation in Eq. (7)
ncluding the eigendecomposition of a matrix, which is especially
ime-consuming for DA problems involving a large number of
redictors (e.g. problems on the Corn data set). JDOT solves the
arth Movers’ distance problem to come up with the optimal
ransport plan between source and target domain samples, which
cales exponentially with the number of samples involved. Thus,
or larger scale problems (e.g. the Melamine data set) the ex-
cution time of JDOT becomes very large. Finally, (primal) TCA
olves a generalized eigenvalue problem, which scales similar to
IPALS with the number of predictors but involves factorization
f two (i.e. total and domain scatter) matrices. Finally, Fig. 3
hows the average execution times vs. the target domain error,
here DIPALS compares favorably with the competing methods.

. Conclusion

We have here considered unsupervised DA for multivariate re-
ression under linear input–output relationship, multicollinearity
7

and approximately normally distributed domains – a situation
frequently encountered in analytical chemistry. We proposed a
novel algorithm that performs DA under the non-iterative partial
least squares (NIPALS) framework by extending the NIPALS objec-
tive by a domain regularization term. Notably, the solution of the
underlying convex optimization problem is obtained in closed-
form for each latent variable yielding a linear subspace with
high predictive power towards a (continuous) response and low
domain discrepancy. This is in contrast to other DA techniques
that rely on numerical optimization or employ dimensionality
reduction on (non-linear) feature spaces. The latter can be consid-
ered inappropriate if (i) the underlying input–output relationship
is linear and/or (ii) when aiming at interpretable models, which
are usually preferred in analytical chemistry. Finally, we have
demonstrated superiority of our approach over different state-
of-the-art DA techniques for linear regression on the Melamine
dataset and similar performance on the Corn and Tablets datasets.
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