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Current trends in the biopharmaceutical market such as

the diversification of therapies as well as the increasing

time-to-market pressure will trigger the rethinking of

bioprocess development and production approaches.

Thereby, the importance of development time and

manufacturing costs will increase, especially for microbial

production.

In the present review, we investigate three technological

approaches which, to our opinion, will play a key role in

the future of biopharmaceutical production. The first

cornerstone of process development is the generation

and effective utilization of platform knowledge. Building

processes on well understood microbial and technologi-

cal platforms allows to accelerate early-stage bioprocess

development and to better condense this knowledge

into multi-purpose technologies and applicable mathe-

matical models. Second, the application of verified scale
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down systems and in silico models for process design and

characterization will reduce the required number of

large scale batches before dossier submission. Third,

the broader availability of mathematical process models

and the improvement of process analytical technologies

will increase the applicability and acceptance of ad-

vanced control and process automation in the

manufacturing scale. This will reduce process failure

rates and subsequently cost of goods. Along these three

aspects we give an overview of recently developed key

tools and their potential integration into bioprocess

development strategies.

Introduction
Parallel to the emergence of novel biopharmaceuticals, the

last decades led to an outstanding expansion of knowledge in

the field of biopharmaceutical production [1–3]. In the next

years, the integration of this knowledge in biopharmaceutical

development and production will be a key factor to address

increasing challenges, such as:
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-Enhanced competition and time pressure

The rapid increase in the number of biopharmaceutical drug

candidates led to a diversification of the company landscape

and an acceleration of competition. For example, the emer-

gence of biosimilars forced major biopharmaceutical players

to rethink business and development strategies [4] and en-

hanced the importance of manufacturing costs [5]. Addition-

ally, the pharmaceutical industry will be continuously

challenged to deliver fast solutions to global health threats,

as demonstrated by the recent COVID-19 pandemic.

-Decreasing biopharmaceutical R&D productivity

The return of investment on new biologicals is continuously

decreasing due to an increase in drug development costs as

well as a decrease on average sales per new product [6]. These

trends will force pharmaceutical companies towards in-

creased cost awareness in each and every part of the product

life cycle, including development [7] and manufacturing

costs [8].

-Decreasing patient group and production batch

sizes due to increased drug specificity

Advances in the understanding of disease pathology and the

availability of precise diagnostic tools enable the development

and use of targeted therapies. For example, genetic read and

write tools will facilitate the use of nucleic-acid-based informa-

tion for individualized therapies [9–11]. This trend will require

a complete rethinking of various aspects along the supplychain

of such therapies (e.g. [12]). Generally, we anticipate that the

decrease in patient group sizes will ultimately increase the

importance of process development and manufacturing costs

within the total product development budget [13].

Overall, these factors will increase the importance of cost

and time required for the development and manufacturing of

novel and improved biopharmaceuticals. In view of the

increasing variety of biotherapeutics where microbial produc-

tion technologies are applied [14–16], decreasing

manufacturing costs and shortening development times will

be key factors to increase the competitiveness of microbial

manufacturing. To effectively tackle the addressed chal-

lenges, the technological advances of the last decade have

to be adopted on the shop floor. Due to the underlying

biological complexity [17], the high number of required unit

operations [18] and the strict requirements towards quality

and product safety, biopharmaceutical production has very

tight requirements [19,20]. Any advancements and their

implementation is less straightforward as in other productive

sectors [21].

From a Contract Manufacturing Organizations (CMO) per-

spective, three approaches need to be in focus to facilitate the

adoption of recent technological advancements:

- Build on well understood biological and process platforms

to enable fast process development for multiple products
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and the effective utilization and storage of available scien-

tific knowledge through mathematical descriptions.

- Facilitated process design and characterization supported

by scale-down models and in silico simulations, thereby

anticipation of process robustness early in the process life

cycle.

- Reduced number of failed batches and manual interaction

through site- and scale-independent control strategies &

automation, based on the gained platform knowledge that

is condensed in mathematical models and well-established

in-process analytics.

Within this review, we give an insight in recent techno-

logical advances in microbial production processes along the

three above mentioned topics. By discussing relevant exam-

ples, the review aims to point out how process development

can be efficiently based on well-understood biological and

technological platforms (Section ‘Biological and technologi-

cal platforms’), how this knowledge can be used for a faster

development of robust and optimal processes (Section ‘Scale

down models and digital process design’) and how advanced

monitoring, control and process automation (Section

‘Advanced monitoring, control and automation’) will allow

increased efficiency in the manufacturing of biotherapeutics.

Biological and technological platforms
The increasing amount of biotechnological process knowl-

edge is captured in the growing body of scientific literature,

patent applications as well as company databases in the

pharmaceutical industry. The effective usage of biological

and technological platform knowledge for the development

of processes and products will help to reduce both cost and

development time by avoiding continuously recurring devel-

opments of production hosts, molecular and analytical meth-

ods as well as unit operations.

Once these platforms are established, they need to be

maintained to guarantee their validity and applicability

across different applications. To do so, a systematic knowl-

edge management is needed [22], which was reviewed recent-

ly in the context of the Quality by Design principles [23]. The

review points out, that the establishment of mathematical

models to store and maintain knowledge in an applicable

format is not fully exploited and still strongly restricted to the

academic sector. Nevertheless, biological and process model-

ling can be a key to systematically leverage technologies

across different applications and pharmaceutical products

along the full product and process lifecycle [24,25]. To do

so, the established and maintained mathematical models

need to be integrated process development activities as well

as the shop floor, including direct information transfer from

the physical plant and human interactions. This can then be

regarded as a digital twin [26].
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Table 1. Process knowledge platform for microbial USP parameters.

Product class Host and expression loci Temperature Feed profile Applied inducer concentration Reference

Nano-bodies, fABs E. coli/secretion
into periplasm

25–32 �C Batch-like or static qs; qs,Glu = 0.15 g/g/h Arabinose (0.07–0.26%, w/v)lactose
qs,lac,max = 0.33 g/g/h;
IPTG, 1.25 mM

[34,35]

P. pastoris/extracellular 25–30 �C Static feeding qs = 0.03–0.06 g/g/h,
dynamic increase of qs up to qs,max

increases qp

Methanol 0.5–1% (v/v) [42,44–47]

Host toxic protein E. coli/IB (inactive) 30–31.5 �C Static qs, qs = 0.25–0.45 g/g/h
Dynamic: shift from high to low qs

IPTG, 0.5 mM [48–51]

E. coli/IB (active) 15–25 �C Batch like growth at mmax Lactose auto-induction,
IPTG 0.4 mM

[52–54]

pDNA E. coli/intracellular 42–45 �C Static feeding with qs = 0.26 g/g/h,
trends show lower m enhances qp

no induction but temperature
shift to enhance PCN

[9,41,55]
Biological platforms
A basic prerequisite for the establishment of a successful

production process is the preparation and the selection of

an appropriate production clone. Process robustness and

efficiency can be already targeted at this level, for example

by (i) decreasing product-related impurities (e.g. codon op-

timization could avoid mismatches during translation) and

(ii) by easing process-related downstream approaches (e.g.

product secretion for Escherichia coli [27]), or by (iii) reducing

the metabolic variability of the host cells (e.g. knock-out of

unnecessary metabolic pathways). A number of strain engi-

neering and clone selection tools have been summarized in

excellent reviews [15,28]. Here we give a short overview of

biological platforms and their preferred process conditions

for relevant microbial products, which are also summarized

in Table 1.

For the production of nucleic acids, the pharmaceutical

industry uses predominantly E. coli as a production host [9],

represented also in the rising number of filed patents for

pDNA production using E. coli over the last decade [29]. Aside

from nucleic acid production, E. coli is also used for the

production of non-glycosylated proteins, where besides dif-

ferent hormones [30] especially antibody fragments (fABs) are

of rising interest [14,31]. Strain and protein engineering

techniques allowed to efficiently transfer fABs into the peri-

plasm, making use of its oxidizing environment and thus

allowing disulfide-bond formation, which is needed for cor-

rect folding of the fABs [32,33]. For these processes a temper-

ature decrease throughout induction, were found to yield in

higher fAB titers [34,35].

Even though extracellular or periplasmic product location

is desirable to ease further purification steps, overall process

yield might be favorable when applying intracellular protein

expression in E. coli hosts, despite time- and cost intensive

downstream procedures [36]. As the host cell cannot cope

with the high amounts of recombinant protein produced, the

formation of inclusion bodies (IBs) – misfolded protein aggre-
Please cite this article in press as: Zalai D, et al. Microbial technologies for biotherapeutics prod
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gates in E. coli – is frequently observed [37,38]. Although

refolding into the active state of the protein is usually re-

quired, inclusion body formation also comes along with

benefits, such as less proteolytic degradation, exceptionally

high product titers and the possibility of expressing host-cell

toxic proteins [36,39]. Cultivation temperature hereby influ-

ences enzymatic activity of the aggregated proteins, where a

decrease of cultivation temperature (below the 30 �C mark)

resulted in higher activity [37,40]. Whereas relatively low

cultivation temperatures reportedly boost recombinant pro-

tein production, it was shown that pDNA manufacturing can

be increased by applying a temperature shift in the range of

42–45 �C. Plasmid copy numbers (PCN) of 400–500 per cell

for genetically optimized strains were reported [9,41].

In addition, Pichia pastoris is also a promising unicellular

host, when it comes to recombinant protein production, as

products can be secreted into the supernatant [31,42]. Dy-

namic feeding approaches developed for P. pastoris have

shown to increase cell specific productivity [43] and extracel-

lular protein concentrations of up to 4 g/L [44].

Upstream process (USP) technologies
Microbial fermentation in red biotechnology can be carried

out in batch, fed-batch or continuous mode. Currently fed-

batch processes in stirred tank reactors are mostly used for

microbial production as they reach higher cell densities

under controlled growth condition [56], compared to batch,

and offer better process stability, compared to continuous

processes [57]. Even though continuous manufacturing is

currently trending [58], challenges remain in the realization

of continuous cultivation processes [58]. Recombinant host

organisms still lack in long term stability and are therefore

often not suited for continuous cultivations. There are recent

works tackling this issue, both on a genetic [59,60] or process-

technological level [39]. A separation of growth and produc-

tion in cascaded reactor setups was also shown as a promising

option to enable stable continuous production [61].
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These upstream process modes are well-understood and

diverse models have been established to describe growth,

product formation and physical properties such us thermo-

dynamics, fluid dynamics, gas transfer and others during the

cultivation process [17,62]. Transforming these mathemati-

cal descriptions of the current upstream process platforms

into digital twins can lead to a more efficient process devel-

opment and scale-up, which will be further discussed in

section 3.

Midstream process (MSP) technologies
The product purification steps of manufacturing technologies

using microbial hosts are regarded much more expensive

compared to the upstream (product expression) steps [63].

High-pressure homogenization, causing cell lysis via cavi-

tation is commonly employed in the industry for the release

of intracellularly accumulated proteins [64,65]. Inclusion

bodies have a highly dense structure and hence can be fairly

easily separated from other host cell proteins via centrifuga-

tion [36,66,67]. Making use of the state of the art centrifuga-

tion and separation techniques, IB purities of 80% prior to

solubilization have been reported [64].

Still, the refolding yield is a major obstacle when it comes

to the feasibility of an IB-process. Highly concentrated chao-

tropic reagents (e.g. urea or guanidine-HCl) have to be used in

order to solubilize aggregated protein. However, the applica-

tion of less concentrated solubilization reagents at high pH

and other ‘mild solubilization’ techniques have shown to

enhance refolding yields [68,69]. Still, refolding yields are

highly dependent on the target protein and no general

applicable solubilization and refolding procedure has been

established. Techniques enhancing refolding yields have

been introduced as stated below [70,71]:

i. on column refolding, to separate interfering substances

ii. the addition of ‘chaperone-like’ particles to enhance

solubility

iii. usage of proper refolding aiding chemicals (e.g. L-arginine

as aggregation suppressor)

iv. dilution techniques to prevent protein aggregation

Refolding by dilution is mathematically described and still

the most common application in industry [72]. However,

target product concentrations have been reported to be as low

as 0.01–0.1 g/L, in order to enable feasible refolding [73]. Low

target product concentrations in the refolding step result in

large processing volumes at manufacturing scale, necessitat-

ing the use of large tanks and requiring proper buffer han-

dling. Therefore, either model-based approaches in refolding

[74] or continuous refolding could become a future perspec-

tive, reducing the scale and buffer consumption of the pro-

cess step [75].
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Usually, soluble proteins are expressed into the periplasm

(E. coli) or extracellularly (P. pastoris), hence no cell disruption

is necessary [35]. As the expression hosts remain intact during

product harvest, the complexity of the process-related impu-

rity matrix for the subsequent DSP process steps is lower when

compared to full cell disruption. Moreover, the expressed

product can be easily separated from the production cells

with filtration techniques such as depth- or tangential flow

filtration [76]. Still, disintegration of stressed cells at the end-

of-filtration and the subsequent release of process-related

impurities have to be carefully monitored.

For the purification of plasmid DNA, cell disruption is

commonly carried out with alkaline lysis by high pH levels

(e.g. pH 12). Thereby, host cell DNA is denaturing irrevers-

ibly, whereas plasmid DNA is able to renature [77]. A major

obstacle in pDNA purification is that high DNA concentra-

tions implement elevated viscosities, being especially critical

in large scale [48]. Thus, determination of DNA concentration

and subsequent dilution is mandatory. Neutralization is

commonly employed with chilled ammonium or potassi-

um-acetate buffers implementing precipitation of cell debris

and RNA [49]. Precipitation yield throughout neutralization

can be boosted efficiently via addition of sodium-dodecyl-

sulphate (SDS) throughout alkaline cell lysis as SDS is able to

denature and linearize impurity proteins [78].

Downstream process (DSP) technologies
Depending on the product locus and the determined purity of

target product, there is a variety of downstream procedures

applicable to meet the demands set by regulatory authorities.

For any process employing gram-negative bacteria as a

host, anion exchange chromatography (AEXC) is commonly

used to purify biopharmaceuticals from lipopolysaccharides

[50]. Even though AEXC is a common chromatography

method to purify products derived from E. coli, irreversible

adsorption of pDNA in the outer layer of stationary phase is

an obstacle in pDNA purification using AEXC [79,80]. Sta-

tionary phases composed of monoliths promote excellent

mass transfer and further exhibit a high binding capacity

for large molecules, which is highly beneficial for the purifi-

cation of pDNA [29].

Cation exchange principles have also been reported to

decrease endotoxin levels sufficiently, so depending on the

pI of the target protein, any ion chromatography method can

be chosen for endotoxin removal [81]. Mhatre et al. reported

that fABs can be efficiently purified using cation exchange

chromatography in combination with an increasing pH gra-

dient [82]. On the other hand, affinity chromatography

principles have been described to yield in sufficient purifica-

tion of fABs [83]. Independent of the target product, size-

exclusion methods or filtration steps are additionally avail-

able procedures to either conduct (i) buffer changes or to

achieve (ii) final target product purification [50]. Moreover,
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model-based approaches, making use of online-derived sig-

nals, would potentially boost chromatographic purification

efficiency even more [84].

Process analytical technologies (PAT)
Besides cost and time-consuming offline measurements, the

current industrial standard measurements of microbial up

and downstream processes are on-line measurement of phys-

ical and physicochemical parameters (e.g. temperature, pH,

headspace pressure, dissolved oxygen, liquid and gas mass

flows) [85–88]. Additionally, measurements such as infrared,

fluorescence, dielectric spectroscopic techniques can be used

to monitor nutrient, metabolite or biomass concentrations in

the fermentation broth [89–91]. For example, near-infrared

and fluorescent spectroscopy were used for the monitoring of

different analytes in bacterial and yeast fermentations [92].

Fluorescent spectroscopy was successfully implemented for

the real-time quantification of the expressed protein concen-

tration [93–96].

The MSP and DSP steps are critical in terms of product

quality impact [70]. Thus, PAT tools need to be provided for

these unit operations [97]. As an example, protein refolding

steps are often run as black boxes lacking any monitoring for

proper process understanding and control. At-line, reverse

phase HPLC analysis was already applied to monitor the

refolding process [98]. However, the time delay of the analysis

and the complex analytical hardware requirement are a major

drawback of this approach [38]. In another study, the dis-

solved oxygen content in the refolding tank could be used to

predict the protein quality by the DO signal, even at large

scales [99]. Fourier-transform infrared spectroscopy (FT-IR)

can predict the secondary structures of proteins therefore it

was used to determine the endpoint of refolding marked by

the start of product aggregate formation [100–102].

As demonstrated in this chapter, a wide body of biological

and processing knowledge as well as a robust process analyti-

cal toolset is available for microbial process development.

These are partly condensed in mathematical models to fur-

ther assist MSP and DSP steps [74,103]. However, a consistent

roadmap or examples about the integration of this generic

knowledge into an easily accessible and applicable platform

database is not available yet. The condensation of process

knowledge into mathematical equations is applied currently

at the next stage of bioprocess development, process design

and characterization – as discussed in the next chapter.

Scale down models and digital process design
No matter what production hosts are used, which upstream

strategy is followed and which downstream unit operations

are included, the development of the full process includes

lab-scale experiments for process design and a subsequent

technology transfer and scale up. These steps are still highly

relying on human experience and expertise, as well as on
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know-how regarding the mentioned biological and techno-

logical platforms. To reduce this dependency on human

experience and expertise and to reveal new possibilities that

reach beyond human capabilities, digital methods for process

design and characterization in combination with highly

automatized and parallelized lab equipment are of central

interest.

Scale-down models
For fast and cost-efficient process development the aim is to

conduct the planned experiments in qualified scale-down

systems to mimic large-scale conditions and thus ease scale

up [104–106].

Physical scale-down systems have the potential to reveal

adaptation mechanisms [107]. For example, which cells that

are being used are able to adjust to rapidly fluctuating envi-

ronmental conditions. Furthermore, scale-down systems can

identify possible root causes for maintaining similar process

performance at different scales. Those systems can analyse

inhomogeneous zones in multi-compartment systems or

analyse integral effects of inhomogeneities in single-com-

partment systems [108,109].

Although some experimental studies exist that aim to

mimic large-scale conditions [110–113], the integration of

such effects in process modelling and digital scale-down

models is of great interest but still a very challenging task

[114]. Recent studies showed such possibilities by combining

CFD simulations with kinetic models [115], which can be

potentially validated by the usage of spatially resolved mea-

surements using either multiple measurement points or sub-

merged sensor balls [116]. In addition to that, single cell

analytics (i.e. online flow cytometry) have been established

to monitor subpopulation formation [110,111]. This revealed

that having different subpopulations negatively influences

process robustness of USP steps [117,118]. Based on these

single cell analytics, novel feedback controls can be possibly

established to counteract to the formation of subpopulations

[119].

Physical scale down models, which today are fully auto-

mated and miniaturized bioreactor systems [107,120,121],

need to be representative to the manufacturing scale [19] and

therefore qualified in the same way [122]. To achieve this,

good industry standards need to be applied to keep scale-

independent factors constant. Additionally, data needs to be

provided to prove that the performance of the scales is

comparable or to show that consistent scale effects can be

identified and quantified (Fig. 1A). This can be done by

equivalence testing with a two-one-sided t-test (TOST)

[123] (as it is exemplarily displayed in Fig. 1B) or by compar-

ing estimated model parameters [107], therefore knowledge

gained from experiments in these scale-down models can be

transferred to manufacturing scale.
uction: Key tools for advanced biopharmaceutical process development and control, Drug
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Fig. 1. (A) Results of a TOST test shows if the 95% confidence interval of difference in means (black error bar) is within the pre-set equivalence acceptance
criteria (EAC, orange lines). If that is the case, as in this example, the equivalence test is passed. (B) Simulated design space of continuous lactic acid bacteria
cultivations [124] under consideration of different maximum growth rates. Based on such simulations, appropriate characterization experiments can be
planned. Minimal values in blue indicate regions with highest lactose to biomass conversion. Values above 0 are not displayed as they indicate non-feasible
regions with potential washout or extensive lactose accumulation. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Digital process design
Quality by design (QbD) [19,20,22,125] has been discussed

since many years for ensuring product quality by deeper

process understanding. However, its full potential is still

not fully exploited [126]. Failing to efficiently plan and

execute activities on the stage of process characterization

leads to increased time-to-market and lack of process under-

standing and robustness. To de-risk process development and

to characterize and transfer developed processes with reason-

able effort, model-based simulation and digital design have

high relevance.

A crucial step in process development and process design is

the determination of the process design space in order to
Please cite this article in press as: Zalai D, et al. Microbial technologies for biotherapeutics prod
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meet the targeted quality [127]. Today the determination of

the process design space follows a series of experimentally

intense steps. Although design of experiments (DoE) enables

to determine the design space within a reduced set of experi-

ments [128], a DoE provides very limited information if the

selected levels and factors were not appropriate. This unnec-

essarily prolongs process development and hinders the iden-

tifications of the real optimum and its consideration in

subsequent regulatory filings.

An in silico investigation of the system behaviour based on

model simulations can complement the classical DoE ap-

proach. The simulation model can be based on physical

and natural laws governing the process, or on pre-existent
uction: Key tools for advanced biopharmaceutical process development and control, Drug

https://doi.org/10.1016/j.ddtec.2021.04.001


Vol. xxx, No. xx 2019 Drug Discovery Today: Technologies |

DDTEC-626; No of Pages 16
knowledge or just on hypothesized relations [129,130]. A

hypothetical design space based on different influencing

factors and deflection levels can be established [131] before

execution of the DoE. Within Fig. 1B, an example of a

precalculated design space is shown for a continuous lactic

acid cultivation (taken form [124]). There, the feasible com-

binations for the dilution rate and feed concentration are

shown for two different maximum growth rates. Specific DoE

experiments can be planned, based on the in silico study and

besides classical data-driven DoE evaluation, the hypothe-

sized model can be validated. Overall, this procedure

increases the chance to hit the real optimum [132]. Recently

this approach was successfully applied to a mammalian cell

culture process to plan different, feasible feed addition sce-

narios [133]. In addition to that, based on a penicillin pro-

duction case study, Bano et al. showed how to reassess the

operational space during running processes [134].

The combination of digital design with directed character-

ization experiments will ultimately lead to a reduction of

required experiments prior to dossier submission. Neverthe-

less, with the application of continuous and scale-out

approaches, the criticality of scale-up effects might decrease

as manufacturing processes will be developed ‘at scale’ and

the scaling to industrial capacity will be done by time and

rather as a scale-out than a scale-up philosophy. In combina-

tion with digital process design and the usage of platform

knowledge, development at scale becomes possible as only a

reduced number of development batches are required [135].

Monte Carlo simulations to anticipate process robustness
In contrast to multivariate regression models, a model based

on physical laws, chemical and biochemical reaction kinetics

is easily scalable and trustworthy predictive [136], thus can be

extrapolated and transferred, to a certain extent. Before mov-

ing into pilot scale, potential process modes (batch, fed-

batch, continuous) can be benchmarked [25,124], potential

scale effects can be investigated [115,137], as well as process

bottlenecks can be revealed [138]. Then, the optimal process

can be designed according to the model [132,139,140]. Al-

though upstream processes are in focus of these develop-

ments, examples exist also for downstream [141]. In recent

publications, the value of these predictive models to assess

process sensitivities or robustness against uncertainties could

be shown for various biochemical processes [18].

A core concept of these investigations is Monte Carlo

simulations. Similarly to process validation where process

reproducibility in terms of product quality is assessed, a

predictive model allows to propagate uncertainties [142]

and assess potential effects of possible changes, such as raw

material quality [143], model parameter uncertainties

[144,145] as well as process deviations. It further allows the

definition of the necessary control strategies and the normal

operating regions [18] along the entire process. In turn, it
Please cite this article in press as: Zalai D, et al. Microbial technologies for biotherapeutics prod
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reduces the number of experiments needed for a comprehen-

sive process validation and for the defined and proven pro-

duction capability [18]. Model simulations could be used to

evaluate the influence of parameter uncertainties on the

process states of an E. coli fed-batch [144] and cultivations

of Streptomyces sp. [146]. The current review mainly focusses

on the characterization of single unit operations. Robust

process outcome and the demonstrated manufacturing capa-

bility can however only be reached by a consistent process

chain. A seamless interplay between the unit operations

needs to be intensified. For this purpose, integrated process

models, as known from other industries, need to be applied to

integrated bioprocesses. With this procedure, also economi-

cal aspects can be included as shown by Biwer et al. [147] for

the very competitive penicillin production process.

Advanced monitoring, control and automation
Due to the complexity of biopharmaceutical products and

their manufacturing processes, advanced process monitoring

and control methods are mandatory to consistently deliver

the desired product quality [85,86]. Besides the control of the

physical and physicochemical parameters, such as pH, tem-

perature and dissolved oxygen, current control still strongly

relies on quality by testing and on manual control, based on

single measurements [148]. To elevate process control to an

advanced level, current process monitoring and control strat-

egies have to be transformed from using individual sensors

into a systematic approach to monitor and subsequently

control key parameters that cover the entire manufacturing

process. This can only be done if a digital twin runs parallel to

the respective process step or the entire process chain. These

digital twins can consist of soft-sensors [149], real-time mass

balances [150], state observers [151] or model based [152] or

model predictive controllers [153]. Thus, data from appropri-

ate process sensors have to be fetched into the underlying

model. This makes the model capable of doing online predic-

tion of process variances and allows an immediate control,

ensuring increased process stability and surveillance, which is

crucial to achieve consistent product quality.

Digital twins for process monitoring
After data collection using Process Analytical Technologies

(see Section ‘Process analytical technologies (PAT)’), the mea-

sured raw information needs to be converted into the desired

monitoring outputs to achieve full process surveillance. Here-

by, the mentioned PAT measurements, which are also sche-

matically displayed in Fig. 2A, provide real-time information

of the ongoing process, whereas the deployed model contains

prior platform knowledge, which are mainly technical and

biological relationships and boundaries of the system

[154,155] in form of a mathematical process description.

For the integration of the measurements, it is not important

whether measurements are performed in-line, on-line, at-line
uction: Key tools for advanced biopharmaceutical process development and control, Drug
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Fig. 2. (A) Possible PAT scenarios as digital twin inputs for bioprocess monitoring. (B) Possible effect of advanced process control demonstrated with an
antibody fragment producing E. coli fed-batch process, compared to a constant feed rate during induction. With the same amount of applied feed, the
product amount can be doubled, and the biological reproducibility increased.
or off-line, but it is important that they are able to detect

deviation in time with the required accuracy [156].

To establish a digital twin for monitoring, different steps

need to be considered [157]. Based on observability analysis

[158] it can be analysed, which measurement combinations

can be selected according to their information content [159].

Through subsequent simulation studies, required measure-

ment intervals, measurement accuracies as well as effect of

outliers on the expected monitoring output can be investi-

gated [160].

Simple examples of successful, digital twin-based monitor-

ing are based on mass balancing [161–163]. By considering

the law of the conservation of mass, missing conversion rates

can be determined. Under usage of off-gas balancing, Ahele
Please cite this article in press as: Zalai D, et al. Microbial technologies for biotherapeutics prod
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et al. [163] showed to efficiently reduce batch-to-batch

variations. In contrast to that, data-driven approaches based

on latent variable techniques (principle component analysis)

show similar possibilities towards golden batch monitoring

[164].

By elemental balancing, substrate inflow, off-gas composi-

tion, biomass growth and concentrations [162,165], metabol-

ic shifts [166] and conversion yields [162] can be directly

calculated in carbon source limited fed-batch processes. Al-

though, relying on first principle mass balances, these

approaches do not include product information and other

cell internal reaction mechanisms.

Models with underlying reaction kinetics, enable the de-

scription of cell internal behaviour [17]. The limiting factor of
uction: Key tools for advanced biopharmaceutical process development and control, Drug
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these models are often their over-parameterization, therefore

such models need to be simplified towards the scope of

application [167,168]. In addition, suitable filtering algo-

rithms, such as the extended and unscented Kalman filter

as well as particle filters [169,170] that are able to cope with

non-linearities, have to be considered. Similarly to the above-

mentioned elemental balances, simple growth models were

able to correctly predict growth behaviour including standard

online analytics such as off-gas composition [171,172].

In more recent publications, the monitoring scenarios were

extended by near-infrared and Raman spectroscopic measure-

ments [92,157]. The main target was to include product

information, which was measured by NIR for ethanol [92]

and by Raman for penicillin [157]. In combination with the

underlying process model that describes the growth and

production kinetics of the investigated yeast and P. chryso-

genum species, accurate real-time monitoring of all relevant

variables could be achieved. Besides taking the spectral infor-

mation directly as a measurement input, Destro et al. showed

a possibility to combine data-driven and knowledge-driven

(mechanistic) models within a state estimator [173]. This

extension led to better fault detection capabilities in contin-

uous and fed-batch simulations.

Other approaches successfully dealt with the incorporation

of delayed offline measurements for real-time monitoring

[174–176]. Hereby, results from offline samples could be

successfully used for different state estimators [169] or for

the reparameterization of real-time models [177]. Other

works included online and time-delayed offline analytics

for accurate monitoring. To achieve this, minor and major

model update steps had to be defined [175,176]. Based on this

configuration, accurate surveillance of product formation in

penicillin production processes was achieved with daily prod-

uct measurements and a delay of 6 h [174,178]. For E. coli fed-

batches a similar scenario enabled accurate and real-time

determination of current transfer rates, which led to optimal

supply of oxygen [179].

Advanced and predictive process control
After developing a digital twin for monitoring, feedback

control can be based on the monitoring outputs and preven-

tive control actions can be directly based on the digital twin

[180]. Any deviations can lead to significant product loss, or,

in worst case, to a failure of the whole batch. Therefore, beside

of designing a process to deliver the aimed product quality

according to Quality by Design, rigorous control and efficient

event prediction tools are needed to continuously deliver the

targeted quality [148,181].

Biochemical processes are very sensitive against changes

in process parameters, so little overshoots in temperature or

pH or even nutrient depletion can have an irreversible effect

on the production organisms [181]. This sensitiveness

requires to act in a predictive manner as corrective measures
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based on standard feedback controllers (e.g. step control or

PID) can be too late in time or by wrong tuning or changing

system dynamics, they can fail to rigorously converge to the

aimed set-point [182]. Besides the tight control of environ-

mental factors, cell- or product-specific variables, such as

growth [165] and production rates [183] as well as by-prod-

uct formation [182,184] or impurities are critical control

variables. As microbial upstream processes are mostly oper-

ated in fed-batch rather than batch or continuous mode, the

substrate feed rate is often the manipulated variable [185].

The potential effect of this manipulation can be followed on

Fig. 2B, where the controlled, varying feed rate resulted in

twice of the product amount compared to applying the

constant feed rate, although the feed amount was the same

in both cases.

In addition to the use of statistical control charts or

latent variable control as valuable tools for golden batch

control as shown for repetitive P. pastoris fed-batches [164],

there is a trend towards model-based predictive control

[148]. This advanced control methodology can optimize

the manipulated variables towards the predefined goal,

formulated as an objective function [153]. Today, examples

for so called Model Predictive Control (MPC) [186] can be

found in biotechnological applications. Dewasme et al.

showed an MPC implementation for hybridoma cells

[184]. The feed addition was controlled close to overflow

to ensure optimal growth, which in a simulation study,

including model and process uncertainties showed to sig-

nificantly reduce variations in productivity. Yoo et al. [187]

showed how an MPC can be used to optimize the lipid

content in microalgae cultures. del Rio-Chanona et al.

[177] implemented a self-optimizing model for optimal

hydrogen production with cyanobacteria. Ulonska et al.

[188] compared the performance of an MPC to model-based

control in an E. coli fed-batch with the aim to control both

glucose and lactose uptake, where the latter was used as

inducer. The authors in [182] also compared different

controllers in a penicillin production process and showed

in real experiments that the MPC-driven process led to

higher product concentrations  and yields. The implemen-

ted PID and feed-forward controllers were only able to track

the setpoints for substrate uptake as well as nitrogen and

product precursor concentrations, whereas the MPC could

foresee and prevent potential formation of side products.

Within the field of downstream processes, model predictive

control could be adopted for chromatography [189], where

compared to manual operation higher purities and yields

could be achieved.

Besides acting on single unit operations, integrated models

can be used to supervise the whole process chain and can

predict and foresee important adaptations and optimal con-

ditions of subsequent steps to reach the target quality in the

most efficient way [18].
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Conclusion
In this contribution, we discussed three cornerstones which

will play a key role in the necessary adaptation of bioprocess

development and manufacturing to current trends in the

pharmaceutical industry. To our opinion, the targeted and

tailored application of these tools will allow the development

of robust manufacturing processes for biotherapeutics pro-

duction and will subsequently contribute to enhanced devel-

opment efficiency that will show an improvement in the

competitiveness of microbial manufacturing technologies.

First, an overview on the available platform knowledge for

microbial process development was provided. Examples for

the capture and storage of generic biological and process

knowledge in the form of mathematical models were shown.

We postulate that proper knowledge management and data

science tools should be used to condense the growing body of

scientific knowledge into mathematical models to make ge-

neric platform knowledge easily accessible and to enable the

utilization of true platform technologies for accelerated pro-

cess development.

Second, enhanced process knowledge and facilitated pro-

cess development can be achieved through the digitalization

of process design and targeted process characterization. These

tasks strongly rely on verified scale-down systems as well as in
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silico modelling approaches. In silico process models enable

the effective utilization of platform knowledge and reduce

the need of physical experiments that are required for the

process understanding that can lead to process validation and

dossier submission.

Third, the ultimate goal of bioprocess development is the

definition of a process control strategy for the robust delivery

of the product in the targeted quality and appropriate quan-

tity. This goal requires the development of advanced and

predictive control strategies. To utilize the full potential of

digital twins, control strategies should involve automated

decision and feedback control along the entire manufactur-

ing process chain.

Our vision is that platform knowledge will be captured

increasingly in mathematical process models, which will

be maintained and continuously improved through feed-

ing back the generated process knowledge throughout the

entire lifecycle. This knowledge cycle should be supported

by accessible and interconnected databases and the appli-

cation of standardized knowledge management and data

science tools. Easily accessible platform knowledge will be

utilized in digital process development approaches and

will ultimately lead to the acceleration of bioprocess

development.
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2019. http://dx.doi.org/10.3384/diss.diva-160524.

[102] Walther C, Mayer S, Jungbauer A, Dürauer A. Getting ready for PAT: scale
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